Generalized Boussinesq type of equations with compactons, solitons and periodic solutions

被引:13
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
compactons; solitons; periodic solutions; Boussinesq equation; sine-cosine ansatz;
D O I
10.1016/j.amc.2004.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized Boussinesq type of equations with positive and negative exponents are examined. The analysis depends mainly on the sine-cosine ansatz. It is formally shown that these nonlinear models give rise to compactons, solitary patterns, solitons, and periodic solutions depending on the exponents and the coefficients of the derivatives of u(x, t). The presented scheme reveals quite a number of remarkable features that will be helpful for identical problems. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1162 / 1178
页数:17
相关论文
共 37 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]  
Adomian G., 1994, SOLVING FRONTIER PRO
[3]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[4]   Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system [J].
Feng, BF ;
Malomed, BA ;
Kawahara, T .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (3-4) :127-138
[5]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[6]   A GENERAL PHYSICAL APPROACH TO SOLITARY WAVE CONSTRUCTION FROM LINEAR SOLUTIONS [J].
HEREMAN, W ;
KORPEL, A ;
BANERJEE, PP .
WAVE MOTION, 1985, 7 (03) :283-289
[7]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[8]  
Kadomtsev B.B., 1974, SOV PHYS JETP, V39, P285
[9]   Self-focusing and transverse instabilities of solitary waves [J].
Kivshar, YS ;
Pelinovsky, DE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (04) :118-195
[10]   Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) :653-666