Accurate positioning of functional residues with robotics-inspired computational protein design

被引:7
作者
Krivacic, Cody [1 ,2 ]
Kundert, Kale [2 ,3 ]
Pan, Xingjie [1 ,2 ]
Pache, Roland A. [2 ,7 ]
Liu, Lin [2 ]
Conchuir, Shane O. [2 ]
Jeliazkov, Jeliazko R. [4 ]
Gray, Jeffrey J. [5 ]
Thompson, Michael C. [2 ,8 ]
Fraser, James S. [1 ,2 ,3 ,6 ]
Kortemme, Tanja [1 ,2 ,3 ,6 ]
机构
[1] Univ Calif San Francisco, UC Berkeley UCSF Grad Program Bioengn, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Biophys Grad Program, San Francisco, CA 94158 USA
[4] Johns Hopkins Univ, Program Mol Biophys, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[6] Univ Calif San Francisco, Quantitat Biosci Inst, San Francisco, CA 94158 USA
[7] Novozymes AS, DK-2800 Lyngby, Denmark
[8] Univ Calif Merced, Dept Chem & Biochem, Merced, CA 95343 USA
关键词
computational protein design; structure prediction; design of function; Rosetta; STRUCTURE PREDICTION; REFINEMENT; ISOMERASE; OPTIMIZATION; MUTAGENESIS; COORDINATE; BACKBONE; POTENT; SPACE; LOOPS;
D O I
10.1073/pnas.2115480119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteins achieve their complex functions, such as molecular recognition with high affinity and specificity, through intricate threedimensional geometries in functional sites. To engineer new protein functions, accurate positioning of amino acid functional groups is therefore critical but has remained difficult to achieve by computational methods because of current limitations in the design of new conformations with arbitrary user-defined geometries. Here, we introduce two computational methods capable of generating and predicting new local protein geometries: fragment kinematic closure (FKIC) and loophash kinematic closure (LHKIC). FKIC and LHKIC integrate two approaches: robotics-inspired kinematics of protein conformations and insertion of peptide fragments. We show that FKIC and LHKIC predict native-like conformations at atomic accuracy and with up to 140-fold improvements in sampling efficiency over previous approaches. We then use these methods to create a design protocol, pull into place (PIP), to position functionally important side chains via design of backbone conformations. We validate PIP by remodeling a sizeable active site region in an enzyme and confirming the engineered new conformations of two designs with crystal structures. The described methods can be applied broadly to the design of user defined geometries for new protein functions.
引用
收藏
页数:10
相关论文
共 53 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Towards automated crystallographic structure refinement with phenix.refine
    Afonine, Pavel V.
    Grosse-Kunstleve, Ralf W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Moriarty, Nigel W.
    Mustyakimov, Marat
    Terwilliger, Thomas C.
    Urzhumtsev, Alexandre
    Zwart, Peter H.
    Adams, Paul D.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 : 352 - 367
  • [3] The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design
    Alford, Rebecca F.
    Leaver-Fay, Andrew
    Jeliazkov, Jeliazko R.
    O'Meara, Matthew J.
    DiMaio, Frank P.
    Park, Hahnbeom
    Shapovalov, Maxim V.
    Renfrew, P. Douglas
    Mulligan, Vikram K.
    Kappel, Kalli
    Labonte, Jason W.
    Pacella, Michael S.
    Bonneau, Richard
    Bradley, Philip
    Dunbrack, Roland L., Jr.
    Das, Rhiju
    Baker, David
    Kuhlman, Brian
    Kortemme, Tanja
    Gray, Jeffrey J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 3031 - 3048
  • [4] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [5] What has de novo protein design taught us about protein folding and biophysics?
    Baker, David
    [J]. PROTEIN SCIENCE, 2019, 28 (04) : 678 - 683
  • [6] Motif-directed redesign of enzyme specificity
    Borgo, Benjamin
    Havranek, James J.
    [J]. PROTEIN SCIENCE, 2014, 23 (03) : 312 - 320
  • [7] Cyclic coordinate descent: A robotics algorithm for protein loop closure
    Canutescu, AA
    Dunbrack, RL
    [J]. PROTEIN SCIENCE, 2003, 12 (05) : 963 - 972
  • [8] Role of conserved Met112 residue in the catalytic activity and stability of ketosteroid isomerase
    Cha, Hyung Jin
    Jang, Do Soo
    Jeong, Jae-Hee
    Hong, Bee Hak
    Yun, Young Sung
    Shin, Eun Ju
    Choi, Kwan Yong
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2016, 1864 (10): : 1322 - 1327
  • [9] FREAD revisited: Accurate loop structure prediction using a database search algorithm
    Choi, Yoonjoo
    Deane, Charlotte M.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (06) : 1431 - 1440
  • [10] A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design
    Conchuir, Shane O.
    Barlow, Kyle A.
    Pache, Roland A.
    Ollikainen, Noah
    Kundert, Kale
    O'Meara, Matthew J.
    Smith, Colin A.
    Kortemme, Tanja
    [J]. PLOS ONE, 2015, 10 (09):