MethylMix: an R package for identifying DNA methylation-driven genes

被引:106
作者
Gevaert, Olivier [1 ]
机构
[1] Stanford Ctr Biomed Informat, Dept Med, Stanford, CA 94305 USA
关键词
D O I
10.1093/bioinformatics/btv020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is an alternative mechanism to deregulate gene expression in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. Yet, few tools exist that can formally identify hypo and hypermethylated genes that are predictive of transcription and thus functionally relevant for a particular disease. To accommodate this lack of tools, we developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix introduces a novel metric, the 'Differential Methylation value' or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data are used to identify, besides differential, transcriptionally predictive methylation states by focusing on methylation changes that effect gene expression.
引用
收藏
页码:1839 / 1841
页数:3
相关论文
共 11 条
[1]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[2]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[3]   DNA methylation in glioblastoma: impact on gene expression and clinical outcome [J].
Etcheverry, Amandine ;
Aubry, Marc ;
de Tayrac, Marie ;
Vauleon, Elodie ;
Boniface, Rachel ;
Guenot, Frederique ;
Saikali, Stephan ;
Hamlat, Abderrahmane ;
Riffaud, Laurent ;
Menei, Philippe ;
Quillien, Veronique ;
Mosser, Jean .
BMC GENOMICS, 2010, 11
[4]   Pancancer analysis of DNA methylation-driven genes using MethylMix [J].
Gevaert, Olivier ;
Tibshirani, Robert ;
Plevritis, Sylvia K. .
GENOME BIOLOGY, 2015, 16
[5]   Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features [J].
Gevaert, Olivier ;
Mitchell, Lex A. ;
Achrol, Achal S. ;
Xu, Jiajing ;
Echegaray, Sebastian ;
Steinberg, Gary K. ;
Cheshier, Samuel H. ;
Napel, Sandy ;
Zaharchuk, Greg ;
Plevritis, Sylvia K. .
RADIOLOGY, 2014, 273 (01) :168-174
[6]   Identification of ovarian cancer driver genes by using module network integration of multi-omics data [J].
Gevaert, Olivier ;
Villalobos, Victor ;
Sikic, Branimir I. ;
Plevritis, Sylvia K. .
INTERFACE FOCUS, 2013, 3 (04)
[7]  
Gevaert Olivier, 2013, Pac Symp Biocomput, P123
[8]   Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide [J].
Hegi, ME ;
Diserens, AC ;
Godard, S ;
Dietrich, PY ;
Regli, L ;
Ostermann, S ;
Otten, P ;
Van Melle, G ;
de Tribolet, N ;
Stupp, R .
CLINICAL CANCER RESEARCH, 2004, 10 (06) :1871-1874
[9]   Genome-Wide DNA Methylation Profiling of CpG Islands in Breast Cancer Identifies Novel Genes Associated with Tumorigenicity [J].
Hill, Victoria K. ;
Ricketts, Christopher ;
Bieche, Ivan ;
Vacher, Sophie ;
Gentle, Dean ;
Lewis, Cheryl ;
Maher, Eamonn R. ;
Latif, Farida .
CANCER RESEARCH, 2011, 71 (08) :2988-2999
[10]   IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data [J].
Wang, Dan ;
Yan, Li ;
Hu, Qiang ;
Sucheston, Lara E. ;
Higgins, Michael J. ;
Ambrosone, Christine B. ;
Johnson, Candace S. ;
Smiraglia, Dominic J. ;
Liu, Song .
BIOINFORMATICS, 2012, 28 (05) :729-730