MethylMix: an R package for identifying DNA methylation-driven genes

被引:106
作者
Gevaert, Olivier [1 ]
机构
[1] Stanford Ctr Biomed Informat, Dept Med, Stanford, CA 94305 USA
关键词
D O I
10.1093/bioinformatics/btv020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is an alternative mechanism to deregulate gene expression in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. Yet, few tools exist that can formally identify hypo and hypermethylated genes that are predictive of transcription and thus functionally relevant for a particular disease. To accommodate this lack of tools, we developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix introduces a novel metric, the 'Differential Methylation value' or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data are used to identify, besides differential, transcriptionally predictive methylation states by focusing on methylation changes that effect gene expression.
引用
收藏
页码:1839 / 1841
页数:3
相关论文
共 11 条
  • [1] Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays
    Aryee, Martin J.
    Jaffe, Andrew E.
    Corrada-Bravo, Hector
    Ladd-Acosta, Christine
    Feinberg, Andrew P.
    Hansen, Kasper D.
    Irizarry, Rafael A.
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1363 - 1369
  • [2] Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    Chin, L.
    Meyerson, M.
    Aldape, K.
    Bigner, D.
    Mikkelsen, T.
    VandenBerg, S.
    Kahn, A.
    Penny, R.
    Ferguson, M. L.
    Gerhard, D. S.
    Getz, G.
    Brennan, C.
    Taylor, B. S.
    Winckler, W.
    Park, P.
    Ladanyi, M.
    Hoadley, K. A.
    Verhaak, R. G. W.
    Hayes, D. N.
    Spellman, Paul T.
    Absher, D.
    Weir, B. A.
    Ding, L.
    Wheeler, D.
    Lawrence, M. S.
    Cibulskis, K.
    Mardis, E.
    Zhang, Jinghui
    Wilson, R. K.
    Donehower, L.
    Wheeler, D. A.
    Purdom, E.
    Wallis, J.
    Laird, P. W.
    Herman, J. G.
    Schuebel, K. E.
    Weisenberger, D. J.
    Baylin, S. B.
    Schultz, N.
    Yao, Jun
    Wiedemeyer, R.
    Weinstein, J.
    Sander, C.
    Gibbs, R. A.
    Gray, J.
    Kucherlapati, R.
    Lander, E. S.
    Myers, R. M.
    Perou, C. M.
    McLendon, Roger
    [J]. NATURE, 2008, 455 (7216) : 1061 - 1068
  • [3] DNA methylation in glioblastoma: impact on gene expression and clinical outcome
    Etcheverry, Amandine
    Aubry, Marc
    de Tayrac, Marie
    Vauleon, Elodie
    Boniface, Rachel
    Guenot, Frederique
    Saikali, Stephan
    Hamlat, Abderrahmane
    Riffaud, Laurent
    Menei, Philippe
    Quillien, Veronique
    Mosser, Jean
    [J]. BMC GENOMICS, 2010, 11
  • [4] Pancancer analysis of DNA methylation-driven genes using MethylMix
    Gevaert, Olivier
    Tibshirani, Robert
    Plevritis, Sylvia K.
    [J]. GENOME BIOLOGY, 2015, 16
  • [5] Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features
    Gevaert, Olivier
    Mitchell, Lex A.
    Achrol, Achal S.
    Xu, Jiajing
    Echegaray, Sebastian
    Steinberg, Gary K.
    Cheshier, Samuel H.
    Napel, Sandy
    Zaharchuk, Greg
    Plevritis, Sylvia K.
    [J]. RADIOLOGY, 2014, 273 (01) : 168 - 174
  • [6] Identification of ovarian cancer driver genes by using module network integration of multi-omics data
    Gevaert, Olivier
    Villalobos, Victor
    Sikic, Branimir I.
    Plevritis, Sylvia K.
    [J]. INTERFACE FOCUS, 2013, 3 (04)
  • [7] Gevaert Olivier, 2013, Pac Symp Biocomput, P123
  • [8] Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide
    Hegi, ME
    Diserens, AC
    Godard, S
    Dietrich, PY
    Regli, L
    Ostermann, S
    Otten, P
    Van Melle, G
    de Tribolet, N
    Stupp, R
    [J]. CLINICAL CANCER RESEARCH, 2004, 10 (06) : 1871 - 1874
  • [9] Genome-Wide DNA Methylation Profiling of CpG Islands in Breast Cancer Identifies Novel Genes Associated with Tumorigenicity
    Hill, Victoria K.
    Ricketts, Christopher
    Bieche, Ivan
    Vacher, Sophie
    Gentle, Dean
    Lewis, Cheryl
    Maher, Eamonn R.
    Latif, Farida
    [J]. CANCER RESEARCH, 2011, 71 (08) : 2988 - 2999
  • [10] IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data
    Wang, Dan
    Yan, Li
    Hu, Qiang
    Sucheston, Lara E.
    Higgins, Michael J.
    Ambrosone, Christine B.
    Johnson, Candace S.
    Smiraglia, Dominic J.
    Liu, Song
    [J]. BIOINFORMATICS, 2012, 28 (05) : 729 - 730