Pyramidal Reservoir Graph Neural Network

被引:7
|
作者
Bianchi, F. M. [1 ,2 ]
Gallicchio, Claudio [3 ]
Micheli, Alessio [3 ]
机构
[1] UiT Arctic Univ Norway, Dept Math & Stat, Hansine Hansens Veg 18, N-9019 Tromso, Norway
[2] NORCE Norwegian Res Ctr AS, Bergen, Norway
[3] Univ Pisa, Dept Comp Sci, Largo B Pontecorvo 3, I-57127 Pisa, Italy
关键词
Reservoir Computing; Graph Echo State Networks; Graph Neural Networks; Graph pooling;
D O I
10.1016/j.neucom.2021.04.131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a deep Graph Neural Network (GNN) model that alternates two types of layers. The first type is inspired by Reservoir Computing (RC) and generates new vertex features by iterating a non-linear map until it converges to a fixed point. The second type of layer implements graph pooling operations, that gradually reduce the support graph and the vertex features, and further improve the computational efficiency of the RC-based GNN. The architecture is, therefore, pyramidal. In the last layer, the features of the remaining vertices are combined into a single vector, which represents the graph embedding. Through a mathematical derivation introduced in this paper, we show formally how graph pooling can reduce the computational complexity of the model and speed-up the convergence of the dynamical updates of the vertex features. Our proposed approach to the design of RC-based GNNs offers an advantageous and principled trade-off between accuracy and complexity, which we extensively demonstrate in experiments on a large set of graph datasets. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 50 条
  • [1] Multiresolution Reservoir Graph Neural Network
    Pasa, Luca
    Navarin, Nicolo
    Sperduti, Alessandro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2642 - 2653
  • [2] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541
  • [3] Heterogeneous Graph Neural Network
    Zhang, Chuxu
    Song, Dongjin
    Huang, Chao
    Swami, Ananthram
    Chawla, Nitesh V.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 793 - 803
  • [4] Are Graph Neural Network Explainers Robust to Graph Noises?
    Li, Yiqiao
    Verma, Sunny
    Yang, Shuiqiao
    Zhou, Jianlong
    Chen, Fang
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 161 - 174
  • [5] Robust Graph Neural Network based on Graph Denoising
    Tenorio, Victor M.
    Rey, Samuel
    Marques, Antonio G.
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 578 - 582
  • [6] ON THE CHOICE OF GRAPH NEURAL NETWORK ARCHITECTURES
    Vignac, Clement
    Ortiz-Jimenez, Guillermo
    Frossard, Pascal
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8489 - 8493
  • [7] GRAPHON AND GRAPH NEURAL NETWORK STABILITY
    Ruiz, Luana
    Wang, Zhiyang
    Ribeiro, Alejandro
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5255 - 5259
  • [8] Tree Decomposed Graph Neural Network
    Wang, Yu
    Derr, Tyler
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2040 - 2049
  • [9] Hyperbolic Graph Wavelet Neural Network
    Zheng, Wenjie
    Zhang, Guofeng
    Zhao, Xiaoran
    Feng, Zhikang
    Song, Lekang
    Kou, Huaizhen
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (04): : 1511 - 1525
  • [10] Graph Neural Networks in Network Neuroscience
    Bessadok, Alaa
    Mahjoub, Mohamed Ali
    Rekik, Islem
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5833 - 5848