A Multiplexed Barcodelet Single-Cell RNA-Seq Approach Elucidates Combinatorial Signaling Pathways that Drive ESC Differentiation

被引:13
作者
Yeo, Grace Hui Ting [1 ,2 ]
Lin, Lin [3 ,4 ,5 ]
Qi, Celine Yueyue [3 ,4 ]
Cha, Minsun [3 ,4 ]
Gifford, David K. [1 ,6 ]
Sherwood, Richard, I [3 ,4 ,5 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Hubrecht Inst, NL-3584 CT Utrecht, Netherlands
[6] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
EMBRYONIC STEM-CELLS; TRANSCRIPTION FACTORS; EXPRESSION; INDUCTION; ACTIVATION; PROGENITOR; DISSECTION; COMPONENT; CIRCUITS; PATTERNS;
D O I
10.1016/j.stem.2020.04.020
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Empirical optimization of stem cell differentiation protocols is time consuming, is laborintensive, and typically does not comprehensively interrogate all relevant signaling pathways. Here we describe barcodelet single-cell RNA sequencing (barRNA-seq), which enables systematic exploration of cellular perturbations by tagging individual cells with RNA "barcodelets" to identify them on the basis of the treatments they receive. We apply barRNA-seq to simultaneously manipulate up to seven developmental pathways and study effects on embryonic stem cell (ESC) germ layer specification and mesodermal specification, uncovering combinatorial effects of signaling pathway activation on gene expression. We further develop a data-driven framework for identifying combinatorial signaling perturbations that drive cells toward specific fates, including several annotated in an existing scRNA-seq gastrulation atlas, and use this approach to guide ESC differentiation into a notochord-like population. We expect that barRNA-seq will have broad utility for investigating and understanding how cooperative signaling pathways drive cell fate acquisition.
引用
收藏
页码:938 / +
页数:19
相关论文
共 54 条
[1]   A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response [J].
Adamson, Britt ;
Norman, Thomas M. ;
Jost, Marco ;
Cho, Min Y. ;
Nunez, James K. ;
Chen, Yuwen ;
Villalta, Jacqueline E. ;
Gilbert, Luke A. ;
Horlbeck, Max A. ;
Hein, Marco Y. ;
Pak, Ryan A. ;
Gray, Andrew N. ;
Gross, Carol A. ;
Dixit, Atray ;
Parnas, Oren ;
Regev, Aviv ;
Weissman, Jonathan S. .
CELL, 2016, 167 (07) :1867-+
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   Combinatorial Signal Perception in the BMP Pathway [J].
Antebi, Yaron E. ;
Linton, James M. ;
Klumpe, Heidi ;
Bintu, Bogdan ;
Gong, Mengsha ;
Su, Christina ;
McCardell, Reed ;
Elowitz, Michael B. .
CELL, 2017, 170 (06) :1184-1196
[4]   Cloning-free CRISPR [J].
Arbab, Mandana ;
Srinivasan, Sharanya ;
Hashimoto, Tatsunori ;
Geijsen, Niels ;
Sherwood, Richard I. .
STEM CELL REPORTS, 2015, 5 (05) :908-917
[5]   Expression of nodal, lefty-A, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3 [J].
Besser, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45076-45084
[6]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[7]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[8]   Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling [J].
Chambers, Stuart M. ;
Fasano, Christopher A. ;
Papapetrou, Eirini P. ;
Tomishima, Mark ;
Sadelain, Michel ;
Studer, Lorenz .
NATURE BIOTECHNOLOGY, 2009, 27 (03) :275-280
[9]   Turning straw into gold: directing cell fate for regenerative medicine [J].
Cohen, Dena E. ;
Melton, Douglas .
NATURE REVIEWS GENETICS, 2011, 12 (04) :243-252
[10]   Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells [J].
Cole, Megan F. ;
Johnstone, Sarah E. ;
Newman, Jamie J. ;
Kagey, Michael H. ;
Young, Richard A. .
GENES & DEVELOPMENT, 2008, 22 (06) :746-755