Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

被引:0
作者
Jarraya, Yosra [1 ]
Bouaziz, Souhir [1 ]
Alimi, Adel M. [1 ]
Abraham, Ajith [2 ,3 ]
机构
[1] Univ Sfax, REs Grp Intelligent Machines REGIM, Natl Sch Engn ENIS, BP 1173, Sfax 3038, Tunisia
[2] Machine Intelligence Res Labs, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
来源
2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2015年
关键词
Multi-Objective Extended Genetic Programming algorithm; Hierarchical Flexible Beta Fuzzy System; hybrid Bacterial Foraging Optimization Algorithm; feature selection; classification problems; GENETIC ALGORITHM; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Multi-Objective Extended Genetic Programming (MOEGP) algorithm is developed to evolve the structure of the Hierarchical Flexible Beta Fuzzy System (HFBFS). The proposed algorithm allows finding the best representation of the hierarchical fuzzy system while trying to attain the desired balance of accuracy/interpretability. Furthermore, the free parameters (Beta membership functions and the consequent parts of rules) encoded in the best structure are tuned by applying the hybrid Bacterial Foraging Optimization Algorithm (the hybrid BFOA). The proposed methodology interleaves both MOEGP and the hybrid BFOA for the structure and the parameter optimization respectively until a satisfactory HFBFS is found. The performance of the approach is evaluated using several classification datasets with low and high input dimensions. Results prove the superiority of our method as compared with other existing works.
引用
收藏
页码:3163 / 3170
页数:8
相关论文
共 50 条
  • [31] A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks
    Patrausanu, Andrei
    Florea, Adrian
    Neghina, Mihai
    Dicoiu, Alina
    Chis, Radu
    PROCESSES, 2024, 12 (05)
  • [32] An Evolutionary Optimization Method Based on Scalarization for Multi-objective Problems
    Studniarski, Marcin
    Al-Jawadi, Radhwan
    Younus, Aisha
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT I, 2018, 655 : 48 - 58
  • [33] Parallel predator–prey interaction for evolutionary multi-objective optimization
    Christian Grimme
    Joachim Lepping
    Alexander Papaspyrou
    Natural Computing, 2012, 11 : 519 - 533
  • [34] A Novel Diversity Maintenance Scheme for Evolutionary Multi-objective Optimization
    Gee, Sen Bong
    Qiu, Xin
    Tan, Kay Chen
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2013, 2013, 8206 : 270 - 277
  • [35] Evolutionary multi-objective optimization based overlapping subspace clustering ?
    Paul, Dipanjyoti
    Saha, Sriparna
    Kumar, Abhishek
    Mathew, Jimson
    PATTERN RECOGNITION LETTERS, 2021, 145 : 208 - 215
  • [36] An Evolutionary Multi-Objective Topology Optimization Framework for Welded Structures
    Guirguis, David
    Aly, Mohamed F.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 372 - 378
  • [37] Simultaneous concept-based evolutionary multi-objective optimization
    Avigad, Gideon
    Moshaiov, Amiram
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 193 - 207
  • [38] Constructing Test Problems for Bilevel Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    Sinha, Ankur
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1153 - 1160
  • [39] Calibrating an hydrological model by an evolutionary strategy for multi-objective optimization
    Araujo, Amarisio da S.
    de Campos Velho, Haroldo F.
    Gomes, Vitor C. F.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (03) : 438 - 450
  • [40] Collective intelligence approaches in interactive evolutionary multi-objective optimization
    Cinalli, Daniel
    Marti, Luis
    Sanchez-Pi, Nayat
    Bicharra Garcia, Ana Cristina
    LOGIC JOURNAL OF THE IGPL, 2020, 28 (01) : 95 - 108