Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

被引:0
作者
Jarraya, Yosra [1 ]
Bouaziz, Souhir [1 ]
Alimi, Adel M. [1 ]
Abraham, Ajith [2 ,3 ]
机构
[1] Univ Sfax, REs Grp Intelligent Machines REGIM, Natl Sch Engn ENIS, BP 1173, Sfax 3038, Tunisia
[2] Machine Intelligence Res Labs, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
来源
2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2015年
关键词
Multi-Objective Extended Genetic Programming algorithm; Hierarchical Flexible Beta Fuzzy System; hybrid Bacterial Foraging Optimization Algorithm; feature selection; classification problems; GENETIC ALGORITHM; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Multi-Objective Extended Genetic Programming (MOEGP) algorithm is developed to evolve the structure of the Hierarchical Flexible Beta Fuzzy System (HFBFS). The proposed algorithm allows finding the best representation of the hierarchical fuzzy system while trying to attain the desired balance of accuracy/interpretability. Furthermore, the free parameters (Beta membership functions and the consequent parts of rules) encoded in the best structure are tuned by applying the hybrid Bacterial Foraging Optimization Algorithm (the hybrid BFOA). The proposed methodology interleaves both MOEGP and the hybrid BFOA for the structure and the parameter optimization respectively until a satisfactory HFBFS is found. The performance of the approach is evaluated using several classification datasets with low and high input dimensions. Results prove the superiority of our method as compared with other existing works.
引用
收藏
页码:3163 / 3170
页数:8
相关论文
共 50 条
  • [1] Hierarchical fuzzy design by a multi-objective evolutionary hybrid approach
    Jarraya, Yosra
    Bouaziz, Souhir
    Alimi, Adel M.
    Abraham, Ajith
    SOFT COMPUTING, 2020, 24 (05) : 3615 - 3630
  • [2] A Multi-Objective Evolutionary Fuzzy System for Big Data
    Ferranti, Andrea
    Marcelloni, Francesco
    Segatori, Armando
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1562 - 1569
  • [3] Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm
    Ming, Mengjun
    Wang, Rui
    Zha, Yabing
    Zhang, Tao
    ENERGIES, 2017, 10 (05)
  • [4] Evolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm
    Matthews, Stephen G.
    Gongora, Mario A.
    Hopgood, Adrian A.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PART I, 2011, 6678 : 198 - 205
  • [5] An analysis on recombination in multi-objective evolutionary optimization
    Qian, Chao
    Yu, Yang
    Zhou, Zhi-Hua
    ARTIFICIAL INTELLIGENCE, 2013, 204 : 99 - 119
  • [6] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [7] A multi-objective evolutionary approach for fuzzy regression analysis
    Jiang, Huimin
    Kwong, C. K.
    Chan, C. Y.
    Yung, K. L.
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 130 : 225 - 235
  • [8] SYSTEM RELIABILITY OPTIMIZATION: A FUZZY MULTI-OBJECTIVE GENETIC ALGORITHM APPROACH
    Mutingi, Michael
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2014, 16 (03): : 400 - 406
  • [9] Multi-Objective Optimization of TSK Fuzzy Models
    Guenounou, Ouahib
    Belmehdi, Ali
    Dahhou, Boutaieb
    2008 5TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2008, : 29 - +
  • [10] Multi-clustering via evolutionary multi-objective optimization
    Wang, Rui
    Lai, Shiming
    Wu, Guohua
    Xing, Lining
    Wang, Ling
    Ishibuchi, Hisao
    INFORMATION SCIENCES, 2018, 450 : 128 - 140