Large-scale probabilistic predictors with and without guarantees of validity

被引:0
作者
Vovk, Vladimir [1 ]
Petej, Ivan [1 ]
Fedorova, Valentina [2 ]
机构
[1] Univ London, Dept Comp Sci, Royal Holloway, Egham, Surrey, England
[2] Yandex, Moscow, Russia
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015) | 2015年 / 28卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies theoretically and empirically a method of turning machine-learning algorithms into probabilistic predictors that automatically enjoys a property of validity (perfect calibration) and is computationally efficient. The price to pay for perfect calibration is that these probabilistic predictors produce imprecise (in practice, almost precise for large data sets) probabilities. When these imprecise probabilities are merged into precise probabilities, the resulting predictors, while losing the theoretical property of perfect calibration, are consistently more accurate than the existing methods in empirical studies.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Large-scale citizen science reveals predictors of sensorimotor adaptation [J].
Tsay, Jonathan S. ;
Asmerian, Hrach ;
Germine, Laura T. ;
Wilmer, Jeremy ;
Ivry, Richard B. ;
Nakayama, Ken .
NATURE HUMAN BEHAVIOUR, 2024, 8 (03) :510-525
[42]   Experimenting with Real Application-specific QoS Guarantees in a Large-scale RINA Demonstrator [J].
Perello, Jordi ;
Lopez, Albert ;
Careglio, Davide .
PROCEEDINGS OF THE 2019 22ND CONFERENCE ON INNOVATION IN CLOUDS, INTERNET AND NETWORKS AND WORKSHOPS (ICIN), 2019, :31-36
[43]   Predictors of sequence capture in a large-scale anchored phylogenomics project [J].
Nunes, Renato ;
Storer, Caroline ;
Doleck, Tenzing ;
Kawahara, Akito Y. ;
Pierce, Naomi E. ;
Lohman, David J. .
FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 10
[44]   Deep Reinforcement Learning for Stabilization of Large-Scale Probabilistic Boolean Networks [J].
Moschoyiannis, Sotiris ;
Chatzaroulas, Evangelos ;
Sliogeris, Vytenis ;
Wu, Yuhu .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (03) :1412-1423
[45]   Using a Probabilistic Model to Assist Merging of Large-Scale Administrative Records [J].
Enamorado, Ted ;
Fifield, Benjamin ;
Imai, Kosuke .
AMERICAN POLITICAL SCIENCE REVIEW, 2019, 113 (02) :353-371
[46]   Large-scale linked data integration using probabilistic reasoning and crowdsourcing [J].
Demartini, Gianluca ;
Difallah, Djellel Eddine ;
Cudre-Mauroux, Philippe .
VLDB JOURNAL, 2013, 22 (05) :665-687
[47]   Modeling and Probabilistic Reasoning of Population Evacuation During Large-scale Disaster [J].
Song, Xuan ;
Zhang, Quanshi ;
Sekimoto, Yoshihide ;
Horanont, Teerayut ;
Ueyama, Satoshi ;
Shibasaki, Ryosuke .
19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, :1231-1239
[48]   Large-scale Probabilistic Functional Modes from resting state fMRI [J].
Harrison, Samuel J. ;
Woolrich, Mark W. ;
Robinson, Emma C. ;
Glasser, Matthew F. ;
Beckmann, Christian F. ;
Jenkinson, Mark ;
Smith, Stephen M. .
NEUROIMAGE, 2015, 109 :217-231
[49]   Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection [J].
Luo, Haoran ;
Zheng, Yongkun ;
Chen, Kang ;
Zhao, Shuo .
IEEE ACCESS, 2024, 12 :9123-9137
[50]   Probabilistic unsupervised classification for large-scale analysis of spectral imaging data [J].
Paradis, Emmanuel .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 107