In situ growth Zn2GeO4 nanorods network on 3D conductive foam as free standing electrode for sodium-ion batteries

被引:3
作者
Bai, Jun [1 ]
Wang, Jing [1 ]
Zhao, RuiRui [1 ]
Hao, Jian [1 ]
Chi, Caixia [2 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[2] Suihua Univ, Food & Pharmaceut Engn Coll, Suihua 152061, Peoples R China
关键词
Zn2GeO4; nanorods; Free standing anode; Na-ion batteries; Nanocomposites; Microstructure; ANODES;
D O I
10.1016/j.matlet.2022.133124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large-scale energy storage and scarcity of lithium bring exploration interest of high-performance anode materials for sodium-ion batteries (SIBs). Herein, Zn2GeO4 nanorods was anchored directly on nickel foam to form a free standing, binder free anode for SIBs, though a facile hydrothermal method. Benefiting from composite effect of nanorod network structure, conductive network and mechanical stability, the Zn2GeO4@NF reaches an initial discharge capacity of 882.0 mAh/g and maintains a capacity of 435.6 mAh/g after 400 cycles at 0.1A/g. At a higher current density (2 A/g) Zn2GeO4@NF also delivers a reversible discharge capacity of 239.7 mAh/g, which is higher than that for the Zn2GeO4 particles.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material [J].
Abel, Paul R. ;
Lin, Yong-Mao ;
de Souza, Tania ;
Chou, Chia-Yun ;
Gupta, Asha ;
Goodenough, John B. ;
Hwang, Gyeong S. ;
Heller, Adam ;
Mullins, C. Buddie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37) :18885-18890
[2]   3D hollow framework of GeOx with ultrathin shell for improved anode performance in lithium-ion batteries [J].
Fang, Zhen ;
Qiang, Tingting ;
Fang, Jiaxin ;
Song, Yixuan ;
Ma, Qiuyang ;
Ye, Ming ;
Qiang, Feiqiang ;
Geng, Baoyou .
ELECTROCHIMICA ACTA, 2015, 151 :453-458
[3]   Lithium-Ion Battery Storage for the Grid-A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids [J].
Hesse, Holger C. ;
Schimpe, Michael ;
Kucevic, Daniel ;
Jossen, Andreas .
ENERGIES, 2017, 10 (12)
[4]   Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries [J].
Huang, Min ;
Liu, Ji-Xin ;
Huang, Peng ;
Hu, Hai ;
Lai, Chao .
RARE METALS, 2021, 40 (02) :425-432
[5]   Enhanced electrochemical properties of carbon coated Zn2GeO4 micron- rods as anode materials for sodium-ion batteries [J].
Li, Malin ;
Zhang, Zhiping ;
Ge, Xin ;
Wei, Zhixuan ;
Yao, Ye ;
Chen, Hong ;
Wang, Chunzhong ;
Du, Fei ;
Chen, Gang .
CHEMICAL ENGINEERING JOURNAL, 2018, 331 :203-210
[6]   Three-dimensional Mn-doped Zn2GeO4 nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance [J].
Li, Qun ;
Miao, Xianguang ;
Wang, Chengxiang ;
Yin, Longwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) :21328-21336
[7]   Zn2GeO4 and Zn2SnO4 nanowires for high-capacity lithium- and sodium-ion batteries [J].
Lim, Young Rok ;
Jung, Chan Su ;
Im, Hyung Soon ;
Park, Kidong ;
Park, Jeunghee ;
Cho, Won Il ;
Cha, Eun Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (27) :10691-10699
[8]   Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries [J].
Lu, Yan ;
Yu, Le ;
Lou, Xiong Wen .
CHEM, 2018, 4 (05) :972-996
[9]   Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries [J].
Meng, Weijia ;
Guo, Meiqing ;
Chen, Jiajun ;
Li, Diansen ;
Wang, Zhihua ;
Yang, Fuqian .
NANOTECHNOLOGY, 2020, 31 (17)
[10]   Vanadate-Based Materials for Li-Ion Batteries: The Search for Anodes for Practical Applications [J].
Ni, Shibing ;
Liu, Jilei ;
Chao, Dongliang ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (14)