WHEN IS A SUM OF ANNIHILATOR IDEALS AN ANNIHILATOR IDEAL?

被引:20
作者
Birkenmeier, G. F. [1 ]
Ghirati, M. [2 ]
Taherifar, A. [2 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Univ Yasuj, Dept Math, Yasuj, Iran
关键词
Annihilator-ideal; Extremally disconnected space; IN-ring; Quasi-Baer ring; SA-ring; EXTENSIONS; RINGS; BAER;
D O I
10.1080/00927872.2014.882931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a ring R a right SA-ring if for any ideals I and J of R there is an ideal K of R such that r(I) + r(J) = r(K). This class of rings is exactly the class of rings for which the lattice of right annihilator ideals is a sublattice of the lattice of ideals. The class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right selfinjective rings). This class is closed under direct products, full and upper triangular matrix rings, certain polynomial rings, and two-sided rings of quotients. The right SA-ring property is a Morita invariant. For a semiprime ring R, it is shown that R is a right SA-ring if and only if R is a quasi-Baer ring if and only if r(I) + r(J) = r(I boolean AND J) for all ideals I and J of R if and only if Spec(R) is extremally disconnected. Examples are provided to illustrate and delimit our results.
引用
收藏
页码:2690 / 2702
页数:13
相关论文
共 22 条
[1]  
Armendariz E. P., 1974, J. Austral. Math. Soc., V18, P470
[2]  
Berberain S.K., 1972, BAER RINGS
[3]  
Birkenmeier G. F., 2009, ROCKY MOUNTAIN J MAT, V32, P1299
[4]  
Birkenmeier G. F., 1989, COMMUN ALGEBRA, V17, P1395
[5]   Ring hulls and applications [J].
Birkenmeier, Gary F. ;
Park, Jae Keol ;
Rizvi, S. Tariq .
JOURNAL OF ALGEBRA, 2006, 304 (02) :633-665
[6]   Hulls of semiprime rings with applications to C*-algebras [J].
Birkenmeier, Gary F. ;
Park, Jae Keol ;
Rizvi, S. Tariq .
JOURNAL OF ALGEBRA, 2009, 322 (02) :327-352
[7]   The structure of rings of quotients [J].
Birkenmeier, Gary F. ;
Park, Jae Keol ;
Rizvi, S. Tariq .
JOURNAL OF ALGEBRA, 2009, 321 (09) :2545-2566
[8]   Quasi-Baer ring extensions and biregrular rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (01) :39-52
[9]   IDEMPOTENTS AND COMPLETELY SEMIPRIME IDEALS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (06) :567-580
[10]  
Birkenmeier GF, 2001, TRENDS MATH, P67