Independent Component Analysis-Based Classification of Alzheimer's Disease MRI Data

被引:74
作者
Yang, Wenlu [1 ,2 ,3 ,4 ]
Lui, Ronald L. M. [5 ]
Gao, Jia-Hong [6 ]
Chan, Tony F. [7 ]
Yau, Shing-Tung [5 ]
Sperling, Reisa A. [3 ,8 ]
Huang, Xudong [1 ,2 ,3 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Radiol, Ctr Adv Med Imaging, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Biomed Informat & Cheminformat Grp, Conjugate & Med Chem Lab, Div Nucl Med & Mol Imaging, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Shanghai Maritime Univ, Informat Engn Coll, Dept Elect Engn, Shanghai, Peoples R China
[5] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[6] Univ Chicago, Brain Res Imaging Ctr, Chicago, IL 60637 USA
[7] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
[8] Brigham & Womens Hosp, Memory Disorders Unit, Dept Neurol, Boston, MA 02115 USA
[9] Massachusetts Gen Hosp, Dept Psychiat, Neurochem Lab, Boston, MA 02114 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Alzheimer's disease; independent component analysis; magnetic resonance imaging; mild cognitive impairment; neuroimaging biomarker; support vector machine; MILD COGNITIVE IMPAIRMENT; SOURCE-BASED MORPHOMETRY; FUNCTIONAL MRI; DIAGNOSIS; GRAY;
D O I
10.3233/JAD-2011-101371
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
There is an unmet medical need to identify neuroimaging biomarkers that allow us to accurately diagnose and monitor Alzheimer's disease (AD) at its very early stages and to assess the response to AD-modifying therapies. To a certain extent, volumetric and functional magnetic resonance imaging (fMRI) studies can detect changes in structure, cerebral blood flow, and blood oxygenation that distinguish AD and mild cognitive impairment (MCI) subjects from healthy control (HC) subjects. However, it has been challenging to use fully automated MRI analytic methods to identify potential AD neuroimaging biomarkers. We have thus proposed a method based on independent component analysis (ICA) for studying potential AD-related MR image features that can be coupled with the use of support vector machine (SVM) for classifying scans into categories of AD, MCI, and HC subjects. The MRI data were selected from the Open Access Series of Imaging Studies (OASIS) and the Alzheimer's Disease Neuroimaging Initiative databases. The experimental results showed that the ICA method coupled with SVM classifier can differentiate AD and MCI patients from HC subjects, although further methodological improvement in the analytic method and inclusion of additional variables may be required for optimal classification.
引用
收藏
页码:775 / 783
页数:9
相关论文
共 28 条
[1]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[2]  
Braak H, 1997, Int Psychogeriatr, V9 Suppl 1, P257, DOI 10.1017/S1041610297004973
[3]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53
[4]   Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI [J].
Chupin, Marie ;
Gerardin, Emilie ;
Cuingnet, Remi ;
Boutet, Claire ;
Lemieux, Louis ;
Lehericy, Stephane ;
Benali, Habib ;
Garnero, Line ;
Colliot, Olivier .
HIPPOCAMPUS, 2009, 19 (06) :579-587
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]  
García-Sebastián M, 2009, LECT NOTES COMPUT SC, V5517, P957, DOI 10.1007/978-3-642-02478-8_120
[7]   Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging [J].
Giesel, Frederik L. ;
Thomann, Philipp A. ;
Hahn, Horst K. ;
Politi, Maria ;
Stieltjes, Bram ;
Weber, Marc-Andre ;
Pantel, Johannes ;
Wilkinson, I. D. ;
Griffiths, Paul D. ;
Schroeder, Johannes ;
Essig, Marco .
EUROPEAN JOURNAL OF RADIOLOGY, 2008, 66 (02) :268-273
[8]  
GOMEZISLA T, 2008, HDB CLIN NEUROL DEME, V89, P234
[9]   Disease Classification With Hippocampal Shape Invariants [J].
Gutman, Boris ;
Wang, Yalin ;
Morra, Jonathan ;
Toga, Arthur W. ;
Thompson, Paul M. .
HIPPOCAMPUS, 2009, 19 (06) :572-578
[10]   Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects [J].
Hua, Xue ;
Leow, Alex D. ;
Parikshak, Neelroop ;
Lee, Suh ;
Chiang, Ming-Chang ;
Toga, Arthur W. ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Thompson, Paul M. .
NEUROIMAGE, 2008, 43 (03) :458-469