Replicate analysis and outlier detection in multivariate NIR calibration, illustrated with biofuel analysis

被引:19
作者
Lillhonga, T
Geladi, P
机构
[1] Swedish Polytech, FIN-65201 Vaasa, Finland
[2] Swedish Univ Agr Sci, Unit Biomass Technol & Chem, SLU Robacksdalen, SE-90403 Umea, Sweden
关键词
near-infrared spectroscopy; multivariate calibration; prediction; moisture; natural variability; at-line; off-line; outlier statistics;
D O I
10.1016/j.aca.2005.01.057
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A biofuel data set is used to show multivariate calibration and prediction of the vital parameter moisture content from near-infrared spectra. At-line sampling of heterogeneous biofuel materials and near-infrared spectroscopy (1050 wavelengths) gave prediction errors of 3 and 1% for the moisture reference. The calibration methodology and prediction diagnostics are presented in the paper with an emphasis of using replicates and duplicates for outlier detection. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [11] Sampling Error Profile Analysis for calibration transfer in multivariate calibration
    Zhang, Feiyu
    Chen, Wanchao
    Zhang, Ruoqiu
    Ding, Boyang
    Yao, Heming
    Ge, Jiong
    Ju, Lei
    Yang, Wuye
    Du, Yiping
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 171 : 234 - 240
  • [12] Outlier detection in the ethylene content determination in propylene copolymer by near-infrared spectroscopy and multivariate calibration
    Macho, S
    Sales, F
    Callao, MP
    Larrechi, MS
    Rius, FX
    APPLIED SPECTROSCOPY, 2001, 55 (11) : 1532 - 1536
  • [13] Algorithm of Stability-Analysis-Based Feature Selection for NIR Calibration Transfer
    Zhang, Zheyu
    Li, Yaoxiang
    Li, Chunxu
    Wang, Zichun
    Chen, Ya
    SENSORS, 2022, 22 (04)
  • [14] Use of an Automatic System in the Preparation of Gas Mixtures for Multivariate Calibration: A Case Study Involving NIR Analysis of Natural Gas
    Barbosa, Mayara F.
    Dantas, Hebertty V.
    Moreira, Pablo N. T.
    Galvao, Roberto K. H.
    Araujo, Mario C. U.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2015, 26 (10) : 2029 - 2034
  • [15] Classification of lyophilised mixtures using multivariate analysis of NIR spectra
    Grohganz, Holger
    Fonteyne, Margot
    Skibsted, Erik
    Falck, Thomas
    Palmqvist, Bent
    Rantanen, Jukka
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2010, 74 (02) : 406 - 412
  • [16] NIR spectroscopy in conjunction with multivariate analysis for non-destructive characterization of Xuan paper
    Luo, Yujia
    Liu, Yun
    Wei, Quan
    Strlic, Matija
    HERITAGE SCIENCE, 2024, 12 (01):
  • [17] Learning from Procrustes analysis to improve multivariate calibration
    Kalivas, John H.
    JOURNAL OF CHEMOMETRICS, 2008, 22 (3-4) : 227 - 234
  • [18] Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis
    Mabood, Fazal
    Boque, Ricard
    Alkindi, Abdulazi Y.
    Al-Harrasi, Ahmed
    Al Amri, Iss S.
    Boukra, Salah
    Jabeen, Farah
    Hussain, Javid
    Abbas, Ghulam
    Naureen, Zakira
    Haq, Quazi M., I
    Shah, Hakikull H.
    Khan, Ajmal
    Khalaf, Samer K.
    Kadim, Isam
    MEAT SCIENCE, 2020, 163
  • [19] Methods of multivariate analysis of NIR reflectance spectra for classification of yerba mate
    Alexandre Marcelo, Marcelo Caetano
    Martins, Camila Alves
    Pozebon, Dirce
    Ferrao, Marco Flores
    ANALYTICAL METHODS, 2014, 6 (19) : 7621 - 7627
  • [20] Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis1
    Fakayode, Sayo O.
    Baker, Gary A.
    Bwambok, David K.
    Bhawawet, Nakara
    Elzey, Brianda
    Siraj, Noureen
    Macchi, Samantha
    Pollard, David A.
    Perez, Rocio L.
    Duncan, A'ja V.
    Warner, Isiah M.
    APPLIED SPECTROSCOPY REVIEWS, 2020, 55 (08) : 647 - 723