The Smallest Eigenvalue of Hankel Matrices

被引:28
作者
Berg, Christian [1 ]
Szwarc, Ryszard [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
关键词
Hankel matrices; Orthogonal polynomials; ORTHOGONAL POLYNOMIALS; MOMENT PROBLEM;
D O I
10.1007/s00365-010-9109-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-N =(s (n+m) ),0 <= n,m <= N, denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behavior of the smallest eigenvalue lambda (N) of H-N . It is proven that lambda (N) has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda (N) can be arbitrarily slow or arbitrarily fast in a sense made precise below. In the indeterminate case, where lambda (N) is known to be bounded below by a strictly positive constant, we prove that the limit of the nth smallest eigenvalue of H-N for N -> a tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed.
引用
收藏
页码:107 / 133
页数:27
相关论文
共 26 条
[1]  
Akhiezer N. I., 1965, CLASSICAL MOMENT PRO
[2]  
[Anonymous], 1962, T AM MATH SOC
[3]  
[Anonymous], 1950, The Problem of Moments
[4]  
Beckermann B, 2000, NUMER MATH, V85, P553, DOI 10.1007/s002110000145
[5]   DENSITY QUESTIONS IN THE CLASSICAL-THEORY OF MOMENTS [J].
BERG, C ;
CHRISTENSEN, JPR .
ANNALES DE L INSTITUT FOURIER, 1981, 31 (03) :99-114
[6]   Orthogonal polynomials and analytic functions associated to positive definite matrices [J].
Berg, C ;
Durán, AJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) :54-67
[7]  
Berg C, 2002, MATH SCAND, V91, P67
[8]   THE INDEX OF DETERMINACY FOR MEASURES AND THE L(2)-NORM OF ORTHONORMAL POLYNOMIALS [J].
BERG, C ;
DURAN, AJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :2795-2811
[9]  
Berg C., ARXIVMATHNT0609283
[10]   Smallest eigenvalues of Hankel matrices for exponential weights [J].
Chen, Y ;
Lubinsky, DS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :476-495