Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis

被引:11
作者
Contreras Martinez, Orfa Ines [1 ]
Angulo Ortiz, Alberto [2 ]
Santafe Patino, Gilmar [2 ]
机构
[1] Univ Cordoba, Fac Basic Sci, Biol Dept, Monteria 230002, Colombia
[2] Univ Cordoba, Fac Basic Sci, Chem Dept, Monteria 230002, Colombia
来源
MOLECULES | 2022年 / 27卷 / 18期
关键词
isoespintanol; antifungal; Oxandra xylopioides; Candida tropicalis; OXANDRA CF. XYLOPIOIDES; BIOFILM FORMATION; ALBICANS; GROWTH; DAMAGE;
D O I
10.3390/molecules27185808
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The growing increase in infections by Candida spp., non-albicans, coupled with expressed drug resistance and high mortality, especially in immunocompromised patients, have made candidemia a great challenge. The efficacy of compounds of plant origin with antifungal potential has recently been reported as an alternative to be used. Our objective was to evaluate the mechanism of the antifungal action of isoespintanol (ISO) against clinical isolates of Candida tropicalis. Microdilution assays revealed fungal growth inhibition, showing minimum inhibitory concentration (MIC) values between 326.6 and 500 mu g/mL. The eradication of mature biofilms by ISO was between 20.3 and 25.8% after 1 h of exposure, being in all cases higher than the effect caused by amphotericin B (AFB), with values between 7.2 and 12.4%. Flow cytometry showed changes in the permeability of the plasma membrane, causing loss of intracellular material and osmotic balance; transmission electron microscopy (TEM) confirmed the damage to the integrity of the plasma membrane. Furthermore, ISO induced the production of intracellular reactive oxygen species (iROS). This indicates that the antifungal action of ISO is associated with damage to membrane integrity and the induction of iROS production, causing cell death.
引用
收藏
页数:21
相关论文
共 56 条
[1]  
[Anonymous], 2008, M27-S3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, P28
[2]  
Arango N., 2007, Sci. Tech, V33, P279, DOI [DOI 10.22517/23447214.6055, 10.22517/23447214.6055]
[3]   Editorial to the Special Issue-"Natural Products and Drug Discovery" [J].
Avato, Pinarosa .
MOLECULES, 2020, 25 (05)
[4]  
Aylate A., 2017, Adv. Anim. Vet. Sci, V5, P107, DOI 10.14737/journal.aavs/2017/5.3.107
[5]   Species Distribution, Antifungal Susceptibility, and Molecular Epidemiology of Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand [J].
Boonsilp, Siriphan ;
Homkaew, Anchalee ;
Phumisantiphong, Uraporn ;
Nutalai, Daranee ;
Wongsuk, Thanwa .
JOURNAL OF FUNGI, 2021, 7 (07)
[6]   Acridine Orange: A Review of Nove Applications for Surgical Cancer Imaging and Therapy [J].
Byvaltsev, Vadim A. ;
Bardonova, Liudmila A. ;
Onaka, Naomi R. ;
Polkin, Roman A. ;
Ochkal, Sergey, V ;
Shepelev, Valerij V. ;
Aliyev, Marat A. ;
Potapov, Alexander A. .
FRONTIERS IN ONCOLOGY, 2019, 9
[7]   Mechanisms of Azole Resistance and Trailing in Candida tropicalis Bloodstream Isolates [J].
Chen, Pao-Yu ;
Chuang, Yu-Chung ;
Wu, Un-In ;
Sun, Hsin-Yun ;
Wang, Jann-Tay ;
Sheng, Wang-Huei ;
Chen, Yee-Chun ;
Chang, Shan-Chwen .
JOURNAL OF FUNGI, 2021, 7 (08)
[8]   Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction [J].
Choi, Hyemin ;
Lee, Dong Gun .
BIOCHIMIE, 2015, 115 :108-115
[9]  
Cortés Jorge Alberto, 2020, Biomed., V40, P195, DOI 10.7705/biomedica.4400
[10]   Antifungal activity of β-lapachone against Candida spp. resistant to azoles and its aspects upon biofilm formation [J].
da Silva, Cecilia R. ;
Campos, Rosana de S. ;
Neto, Joao B. de A. ;
Sampaio, Leticia S. ;
do Nascimento, Francisca B. S. A. ;
do AV Sa, Livia G. ;
Candido, Thiago M. ;
Magalhaes, Hemerson I. F. ;
da Cruz, Eduardo H. G. ;
Junior, Eufranio N. da S. ;
de Moraes, Manoel O. ;
Cavalcanti, Bruno C. ;
Silva, Jacilene ;
Marinho, Emmanuel S. ;
Junior, Helio V. N. .
FUTURE MICROBIOLOGY, 2020, 15 (16) :1543-1554