A Khovanov stable homotopy type for colored links

被引:2
作者
Lobb, Andrew [1 ]
Orson, Patrick [2 ]
Schutz, Dirk [1 ]
机构
[1] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
[2] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2017年 / 17卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
HOMOLOGY;
D O I
10.2140/agt.2017.17.1261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Lipshitz and Sarkar's definition of a stable homotopy type associated to a link L whose cohomology recovers the Khovanov cohomology of L. Given an assignment c (called a coloring) of a positive integer to each component of a link L, we define a stable homotopy type X-col(L-c) whose cohomology recovers the c-colored Khovanov cohomology of L. This goes via Rozansky's definition of a categorified Jones-Wenzl projector P-n as an infinite torus braid on n strands. We then observe that Cooper and Krushkal's explicit definition of P-2 also gives rise to stable homotopy types of colored links ( using the restricted palette {1,2}),and we show that these coincide with X-col. We use this equivalence to compute the stable homotopy type of the. (2,1)-colored Hopf link and the 2-colored trefoil. Finally, we discuss the Cooper-Krushkal projector P-3 and make a conjecture of X-col(U-3) for U the unknot.
引用
收藏
页码:1261 / 1281
页数:21
相关论文
共 13 条