ESTIMATION OF STATE-SPACE MODELS WITH GAUSSIAN MIXTURE PROCESS NOISE

被引:0
|
作者
Miran, Sina [1 ,2 ]
Simon, Jonathan Z. [1 ,2 ,3 ]
Fu, Michael C. [2 ,4 ]
Marcus, Steven I. [1 ,2 ]
Babadi, Behtash [1 ,2 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, ISR, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Biol, College Pk, MD 20742 USA
[4] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
来源
2019 IEEE DATA SCIENCE WORKSHOP (DSW) | 2019年
关键词
state-space modeling; Gaussian mixture models; expectation maximization; particle filtering and smoothing; MAXIMUM-LIKELIHOOD;
D O I
10.1109/dsw.2019.8755571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-space models are widely used to estimate latent dynamic processes from noisy and low-dimensional observations. When applying these models to real data, it is commonly assumed that the state dynamics are governed by Gaussian statistics. However, this assumption does not hold in applications where the process noise is composed of various exogenous components with heterogeneous statistics, resulting in a multimodal distribution. In this work, we consider a state-space model with Gaussian mixture process noise to account for such multimodality. We integrate the Expectation Maximization algorithm with sequential Monte Carlo methods to jointly estimate the Gaussian mixture parameters and states from noisy and low-dimensional observations. We validate our proposed method using simulated data inspired by auditory neuroscience, which reveals significant gains in state estimation as compared to widely used techniques that assume Gaussian state dynamics.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 50 条
  • [21] Identification of Piecewise Affine State-Space Models via Expectation Maximization
    Rui, Rafael
    Ardeshiri, Tohid
    Bazanella, Alexandre
    2016 IEEE CONFERENCE ON COMPUTER AIDED CONTROL SYSTEM DESIGN (CACSD), 2016, : 1066 - 1071
  • [22] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Olsson, Jimmy
    Westerborn Alenlov, Johan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 545 - 576
  • [23] MACROECONOMIC FORECASTING EXPERIENCE WITH BALANCED STATE-SPACE MODELS
    MITTNIK, S
    INTERNATIONAL JOURNAL OF FORECASTING, 1990, 6 (03) : 337 - 348
  • [24] Improving Linear State-Space Models with Additional NIterations
    Gumussoy, Suat
    Ozdemir, Ahmet Arda
    McKelvey, Tomas
    Ljung, Lennart
    Gibanica, Mladen
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 341 - 346
  • [25] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [26] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [27] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [28] A new look at state-space models for neural data
    Paninski, Liam
    Ahmadian, Yashar
    Ferreira, Daniel Gil
    Koyama, Shinsuke
    Rad, Kamiar Rahnama
    Vidne, Michael
    Vogelstein, Joshua
    Wu, Wei
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (1-2) : 107 - 126
  • [29] Maximum Likelihood estimation for non-minimum-phase noise transfer function with Gaussian mixture noise distribution
    Orellana, Rafael
    Bittner, Gustavo
    Carvajal, Rodrigo
    Aguero, Juan C.
    AUTOMATICA, 2022, 135
  • [30] Channel Estimation based on Gaussian Mixture Models with Structured Covariances
    Fesl, Benedikt
    Joham, Michael
    Hu, Sha
    Koller, Michael
    Turan, Nurettin
    Utschick, Wolfgang
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 533 - 537