ESTIMATION OF STATE-SPACE MODELS WITH GAUSSIAN MIXTURE PROCESS NOISE

被引:0
|
作者
Miran, Sina [1 ,2 ]
Simon, Jonathan Z. [1 ,2 ,3 ]
Fu, Michael C. [2 ,4 ]
Marcus, Steven I. [1 ,2 ]
Babadi, Behtash [1 ,2 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, ISR, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Biol, College Pk, MD 20742 USA
[4] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
来源
2019 IEEE DATA SCIENCE WORKSHOP (DSW) | 2019年
关键词
state-space modeling; Gaussian mixture models; expectation maximization; particle filtering and smoothing; MAXIMUM-LIKELIHOOD;
D O I
10.1109/dsw.2019.8755571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-space models are widely used to estimate latent dynamic processes from noisy and low-dimensional observations. When applying these models to real data, it is commonly assumed that the state dynamics are governed by Gaussian statistics. However, this assumption does not hold in applications where the process noise is composed of various exogenous components with heterogeneous statistics, resulting in a multimodal distribution. In this work, we consider a state-space model with Gaussian mixture process noise to account for such multimodality. We integrate the Expectation Maximization algorithm with sequential Monte Carlo methods to jointly estimate the Gaussian mixture parameters and states from noisy and low-dimensional observations. We validate our proposed method using simulated data inspired by auditory neuroscience, which reveals significant gains in state estimation as compared to widely used techniques that assume Gaussian state dynamics.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 50 条
  • [1] Dynamic estimation of auditory temporal response functions via state-space models with Gaussian mixture process noise
    Miran, Sina
    Presacco, Alessandro
    Simon, Jonathan Z.
    Fu, Michael C.
    Marcus, Steven, I
    Babadi, Behtash
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (08)
  • [2] Graphical Inference in Linear-Gaussian State-Space Models
    Elvira, Victor
    Chouzenoux, Emilie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4757 - 4771
  • [3] Identification of Wiener state-space models utilizing Gaussian sum smoothing
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Carvajal, Rodrigo
    Aguero, Juan C.
    AUTOMATICA, 2024, 166
  • [4] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [5] Simultaneous estimation and modeling of nonlinear, non-Gaussian state-space systems
    Steckenrider, J. Josiah
    Furukawa, Tomonari
    INFORMATION SCIENCES, 2021, 578 (578) : 621 - 643
  • [6] Procedures of Parameters' estimation of AR(1) models into lineal state-space models
    Noomene, Rouhia
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 995 - 999
  • [7] Estimation of Cortical Connectivity From EEG Using State-Space Models
    Cheung, Bing Leung Patrick
    Riedner, Brady Alexander
    Tononi, Giulio
    Van Veen, Barry D.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (09) : 2122 - 2134
  • [8] Uncertainty quantification of combustion noise by generalized polynomial chaos and state-space models
    Silva, C. F.
    Pettersson, P.
    Iaccarino, G.
    Ihme, M.
    COMBUSTION AND FLAME, 2020, 217 (113-130) : 113 - 130
  • [9] Least-squares parameter estimation for state-space models with state equality constraints
    Ricco, Rodrigo A.
    Teixeira, Bruno O. S.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (01) : 1 - 13
  • [10] APPROXIMATING THE LIKELIHOOD RATIO IN LINEAR-GAUSSIAN STATE-SPACE MODELS FOR CHANGE DETECTION
    Tsampourakis, Kostas
    Elvira, Victor
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5912 - 5916