L2 HARMONIC 1-FORMS ON COMPLETE SUBMANIFOLDS IN EUCLIDEAN SPACE

被引:12
作者
Fu, Hai-Ping [1 ]
Li, Zhen-Qi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
关键词
Submanifold; total curvature; L-2 harmonic forms; mean curvature; ends; TOTAL SCALAR CURVATURE; MINIMAL HYPERSURFACES; MANIFOLDS; SURFACES; RN+1;
D O I
10.2996/kmj/1257948888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n (n >= 3) be an n-dimensional complete noncompact oriented submanifold in an (n + p)-dimensional Euclidean space Rn+p with finite total mean curvature, i.e, integral(M) vertical bar H vertical bar(n) < infinity, where H is the mean curvature vector of M. Then we prove that each end of M must be non-parabolic. Denote by phi the traceless second fundamental form of M. We also prove that if integral(M) vertical bar phi vertical bar(n) < C(n), where C(n) is an an explicit positive constant, then there are no nontrivial L-2 harmonic 1-forms on M and the first de Rham's cohomology group with compact support of M is trivial. As corollaries, such a submanifold has only one end. This implies that such a minimal submanifold is plane.
引用
收藏
页码:432 / 441
页数:10
相关论文
共 19 条
[1]  
ANDERSON TM, 1986, COMPACTIFICATION MIN
[2]  
Cao HD, 1997, MATH RES LETT, V4, P637
[3]  
CARRON G, ARYJV07043194V1
[4]  
CARRON G, 1992, COLL SMF SEM C, V1, P205
[5]   The structure of weakly stable constant mean curvature hypersurfaces [J].
Cheng, Xu ;
Cheung, Leung-Fu ;
Zhou, Detang .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (01) :101-121
[6]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906
[7]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[8]  
FU HP, L2 HARMONIC 1 FORMS
[9]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[10]  
Li P, 2002, MATH RES LETT, V9, P95