Metriplectic structure, Leibniz dynamics and dissipative systems

被引:27
作者
Guha, Partha
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, W Bengal, India
关键词
metriplectic; Leibniz bracket; Burgers equation; Whitham-Burgers equation; free energy; entropy; Holm-Staley equation;
D O I
10.1016/j.jmaa.2006.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A metriplectic (or Leibniz) structure on a smooth manifold is a pair of skew-symmetric Poisson tensor P and symmetric metric tensor G. The dynamical system defined by the metriplectic structure can be expressed in terms of Leibniz bracket. This structure is used to model the geometry of the dissipative systems. The dynamics of purely dissipative systems are defined by the geometry induced on a phase space via a metric tensor. The notion of Leibniz brackets is extendable to infinite-dimensional spaces. We study metriplectic structure compatible with the Euler-Poincare framework of the Burgers and Whitham-Burgers equations. This means metriplectic structure can be constructed via Euler-Poincare formalism. We also study the Euler-Poincare frame work of the Holm-Staley equation, and this exhibits different type of metriplectic structure. Finally we study the 2D Navier-Stokes using metriplectic techniques. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 28 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], P S PURE MATH AMS
[3]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[4]  
Bloch A. M., 1996, Fields Inst. Commun., V7, P57, DOI DOI 10.1007/BF01244316
[5]  
Bloch AM, 2005, NOT AM MATH SOC, V52, P324
[6]   On almost-Poisson structures in nonholonomic mechanics [J].
Cantrijn, F ;
de León, M ;
de Diego, DM .
NONLINEARITY, 1999, 12 (03) :721-737
[7]  
Degasperis A., 2003, Nonlinear Physics: Theory and Experiment, VII, P37
[8]  
Fish D., 2005, THESIS PORTLAND STAT
[9]   Algebroids - general differential calculi on vector bundles [J].
Grabowski, J ;
Urbanski, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :111-141
[10]   BRACKET FORMULATION OF DIFFUSION-CONVECTION EQUATIONS [J].
GRMELA, M .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 21 (2-3) :179-212