Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma

被引:45
作者
Decuyper, Milan [1 ]
Bonte, Stijn [1 ]
Deblaere, Karel [2 ]
Van Holen, Roel [1 ]
机构
[1] Univ Ghent, Med Image & Signal Proc MEDISIP, Ghent, Belgium
[2] Ghent Univ Hosp, Dept Radiol, Ghent, Belgium
关键词
Glioma; Segmentation; Deep learning; MRI; Molecular markers; TERT PROMOTER MUTATIONS; SURVIVAL; DIFFUSE; ENHANCEMENT; ASSOCIATION; RADIOMICS; LOCATION; 1P/19Q;
D O I
10.1016/j.compmedimag.2020.101831
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the WHO glioma classification guidelines grade (glioblastoma versus lower-grade glioma), IDH mutation and 1p/19q co-deletion status play a central role as they are important markers for prognosis and optimal therapy planning. Currently, diagnosis requires invasive surgical procedures. Therefore, we propose an automatic segmentation and classification pipeline based on routinely acquired pre-operative MRI (T1, T1 postcontrast, T2 and/or FLAIR). A 3D U-Net was designed for segmentation and trained on the BraTS 2019 training dataset. After segmentation, the 3D tumor region of interest is extracted from the MRI and fed into a CNN to simultaneously predict grade, IDH mutation and 1p19q co-deletion. Multi-task learning allowed to handle missing labels and train one network on a large dataset of 628 patients, collected from The Cancer Imaging Archive and BraTS databases. Additionally, the network was validated on an independent dataset of 110 patients retrospectively acquired at the Ghent University Hospital (GUH). Segmentation performance calculated on the BraTS validation set shows an average whole tumor dice score of 90% and increased robustness to missing image modalities by randomly excluding input MRI during training. Classification area under the curve scores are 93%, 94% and 82% on the TCIA test data and 94%, 86% and 87% on the GUH data for grade, IDH and 1p19q status respectively. We developed a fast, automatic pipeline to segment glioma and accurately predict important (molecular) markers based on pre-therapy MRI.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[2]   Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas [J].
Arita, Hideyuki ;
Kinoshita, Manabu ;
Kawaguchi, Atsushi ;
Takahashi, Masamichi ;
Narita, Yoshitaka ;
Terakawa, Yuzo ;
Tsuyuguchi, Naohiro ;
Okita, Yoshiko ;
Nonaka, Masahiro ;
Moriuchi, Shusuke ;
Takagaki, Masatoshi ;
Fujimoto, Yasunori ;
Fukai, Junya ;
Izumoto, Shuichi ;
Ishibashi, Kenichi ;
Nakajima, Yoshikazu ;
Shofuda, Tomoko ;
Kanematsu, Daisuke ;
Yoshioka, Ema ;
Kodama, Yoshinori ;
Mano, Masayuki ;
Mori, Kanji ;
Ichimura, Koichi ;
Kanemura, Yonehiro .
SCIENTIFIC REPORTS, 2018, 8
[3]  
Bakas S., 2018, ARXIV PREPRINT ARXIV
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[6]   Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma [J].
Carrillo, J. A. ;
Lai, A. ;
Nghiemphu, P. L. ;
Kim, H. J. ;
Phillips, H. S. ;
Kharbanda, S. ;
Moftakhar, P. ;
Lalaezari, S. ;
Yong, W. ;
Ellingson, B. M. ;
Cloughesy, T. F. ;
Pope, W. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (07) :1349-1355
[7]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[8]   Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma [J].
Ceccarelli, Michele ;
Barthel, Floris P. ;
Malta, Tathiane M. ;
Sabedot, Thais S. ;
Salama, Sofie R. ;
Murray, Bradley A. ;
Morozova, Olena ;
Newton, Yulia ;
Radenbaugh, Amie ;
Pagnotta, Stefano M. ;
Anjum, Samreen ;
Wang, Jiguang ;
Manyam, Ganiraju ;
Zoppoli, Pietro ;
Ling, Shiyun ;
Rao, Arjun A. ;
Grifford, Mia ;
Cherniack, Andrew D. ;
Zhang, Hailei ;
Poisson, Laila ;
Carlotti, Carlos Gilberto, Jr. ;
Tirapelli, Daniela Pretti da Cunha ;
Rao, Arvind ;
Mikkelsen, Tom ;
Lau, Ching C. ;
Yung, W. K. Alfred ;
Rabadan, Raul ;
Huse, Jason ;
Brat, Daniel J. ;
Lehman, Norman L. ;
Barnholtz-Sloan, Jill S. ;
Zheng, Siyuan ;
Hess, Kenneth ;
Rao, Ganesh ;
Meyerson, Matthew ;
Beroukhim, Rameen ;
Cooper, Lee ;
Akbani, Rehan ;
Wrensch, Margaret ;
Haussler, David ;
Aldape, Kenneth D. ;
Laird, Peter W. ;
Gutmann, David H. ;
Noushmehr, Houtan ;
Iavarone, Antonio ;
Verhaak, Roel G. W. .
CELL, 2016, 164 (03) :550-563
[9]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[10]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207