A review of Morlet wavelet analysis of radial profiles of Saturn's rings

被引:6
作者
Tiscareno, Matthew S. [1 ]
Hedman, Matthew M. [2 ]
机构
[1] SETI Inst, Carl Sagan Ctr Study Life Universe, 189 Bernardo Ave 200, Mountain View, CA 94043 USA
[2] Univ Idaho, Dept Phys, Moscow, ID 83844 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 376卷 / 2126期
关键词
planetary rings; Saturn system; wavelet transform; SPIRAL DENSITY WAVES; PLANETARY RINGS; RESONANCE STRUCTURES; CASSINI DIVISION; OCCULTATION; SEISMOLOGY; DISPERSION; BEHAVIOR; WAKES;
D O I
10.1098/rsta.2018.0046
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spiral waves propagating in Saturn's rings have wavelengths that vary with radial position within the disc. The best-quality observations of these waves have the form of radial profiles centred on a particular azimuth. In that context, the wavelength of a given spiral wave is seen to change substantially with position along the one-dimensional profile. In this paper, we review the use of Morlet wavelet analysis to understand these waves. When signal to noise is high and the cause of the wave is well understood, wavelet analysis has been used to solve for wave parameters that are diagnostic of local disc properties. Waves that are not readily perceptible in the spatial domain signal can be clearly identified. Furthermore, filtering in wavelet space, followed by the reverse wavelet transform, has been used to isolate the part of the signal that is of interest. When the cause of the wave is not known, comparing the phases of the complex-valued wavelet transforms from many profiles has been used to determine wave parameters that cannot be determined from any single profile. When signal to noise is low, co-adding wavelet transforms while manipulating the phase has been used to boost a wave's signal above detection limits. This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
引用
收藏
页数:36
相关论文
共 48 条
[1]  
Addison P. S., 2016, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine, and Finance, DOI DOI 10.1201/9781315372556
[2]   Low-oscillation complex wavelets [J].
Addison, PS ;
Watson, JN ;
Feng, T .
JOURNAL OF SOUND AND VIBRATION, 2002, 254 (04) :733-762
[3]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[4]  
[Anonymous], 1969, Data Reduction and Error Analysis for the Physical Sciences
[5]  
[Anonymous], PLANETARY RINGS
[6]   Waves in Cassini UVIS stellar occultations 2. The C ring [J].
Baillie, Kevin ;
Colwell, Joshua E. ;
Lissauer, Jack J. ;
Esposito, Larry W. ;
Sremcevic, Miodrag .
ICARUS, 2011, 216 (01) :292-308
[7]   NONLINEAR DENSITY WAVES IN PLANETARY RINGS [J].
BORDERIES, N ;
GOLDREICH, P ;
TREMAINE, S .
ICARUS, 1986, 68 (03) :522-533
[8]   The Cassini visual and infrared mapping spectrometer (VIMS) investigation [J].
Brown, RH ;
Baines, KH ;
Bellucci, G ;
Bibring, JP ;
Buratti, BJ ;
Capaccioni, F ;
Cerroni, P ;
Clark, RN ;
Coradini, A ;
Cruikshank, DP ;
Drossart, P ;
Formisano, V ;
Jaumann, R ;
Langevin, Y ;
Matson, DL ;
Mccord, TB ;
Mennella, V ;
Miller, E ;
Nelson, RM ;
Nicholson, PD ;
Sicardy, B ;
Sotin, C .
SPACE SCIENCE REVIEWS, 2004, 115 (1-4) :111-168
[9]  
Charnoz S, 2018, CAMB PLANET, V19, P517
[10]  
Colwell JE, 2009, SATURN FROM CASSINI-HUYGENS, P375, DOI 10.1007/978-1-4020-9217-6_13