Logarithmic stable toric varieties and their moduli

被引:9
作者
Ascher, Kenneth [1 ]
Malcho, Samouil [2 ]
机构
[1] Brown Univ, Math Dept, 151 Thayer St, Providence, RI 02912 USA
[2] Univ Colorado, Boulder, CO 80309 USA
来源
ALGEBRAIC GEOMETRY | 2016年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
log stable maps; Chow quotients; stable toric varieties; toric stacks; QUOTIENTS; GEOMETRY; STACKS; MAPS;
D O I
10.14231/AG-2016-014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Chow quotient of a toric variety by a subtorus, as defined by Kapranov-Sturmfels-Zelevinsky, coarsely represents the main component of the moduli space of stable toric varieties with a map to a fixed projective toric variety, as constructed by Alexeev and Brion. We show that, after we endow both spaces with the structure of a logarithmic stack, the spaces are isomorphic. Along the way, we construct the Chow quotient stack and demonstrate several properties it satisfies.
引用
收藏
页码:296 / 319
页数:24
相关论文
共 23 条
[1]   Weak semistable reduction in characteristic 0 [J].
Abramovich, D ;
Karu, K .
INVENTIONES MATHEMATICAE, 2000, 139 (02) :241-273
[2]  
ABRAMOVICH D, 2013, ADV LECT MATH, V0024, P00001
[3]   STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II [J].
Abramovich, Dan ;
Chen, Qile .
ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) :465-488
[4]   Complete moduli in the presence of semiabelian group action [J].
Alexeev, V .
ANNALS OF MATHEMATICS, 2002, 155 (03) :611-708
[5]  
[Anonymous], 1989, Algebraic analysis, geometry, and number theory
[6]  
[Anonymous], ARXIV14080037
[7]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215
[8]   Stable logarithmic maps to Deligne-Faltings pairs I [J].
Chen, Qile .
ANNALS OF MATHEMATICS, 2014, 180 (02) :455-521
[9]   Chow quotients of toric varieties as moduli of stable log maps [J].
Chen, Qile ;
Satriano, Matthew .
ALGEBRA & NUMBER THEORY, 2013, 7 (09) :2313-2329
[10]  
Geraschenko A, 2015, T AM MATH SOC, V367, P1073