Improvement of SuperDARN velocity measurements by estimating the index of refraction in the scattering region using interferometry

被引:53
作者
Gillies, R. G. [1 ]
Hussey, G. C. [1 ]
Sofko, G. J. [1 ]
McWilliams, K. A. [1 ]
Fiori, R. A. D. [1 ,2 ]
Ponomarenko, P. [3 ]
St-Maurice, J. -P. [1 ]
机构
[1] Univ Saskatchewan, Inst Space & Atmospher Sci, Saskatoon, SK S7N 5E2, Canada
[2] Nat Resources Canada, Geomagnet Lab, Ottawa, ON, Canada
[3] Univ Newcastle, Space Phys Grp, Callaghan, NSW 2308, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
RADAR;
D O I
10.1029/2008JA013967
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In past calculations of convective velocities from Super Dual Auroral Radar Network (SuperDARN) HF radar observations, the refractive index in the scattering region has not been taken into account, and therefore the inferred ionospheric velocities may be underestimated. In light of the significant contribution by SuperDARN to ionospheric and magnetospheric research, it is important to refine the velocity determination. The refractive index in the ionosphere at SuperDARN observation F region altitudes has typical values between 0.8 and close to unity. In the scattering region, where conditions are more extreme, the index of refraction may be much lower. A simple application of Snell's law in spherical coordinates (Bouguer's law) suggests that a proxy for the index of refraction at the scattering location can be determined by measuring the elevation angle of the returned ionospheric radar signal. Using this approximation for refractive index, the Doppler velocity calculation can be refined for each SuperDARN ionospheric echo, using the elevation angles obtained from the SuperDARN interferometer data. A velocity comparison of DMSP and SuperDARN observations has revealed that the SuperDARN speeds were systematically lower than the DMSP speeds. A linear regression analysis of the velocity comparisons found a best fit slope of 0.74. When the elevation angle data were used to estimate refractive index, the best fit slope rose 12% to 0.83. As most SuperDARN radars employ an interferometer antenna array for elevation angle measurements, the improvement in velocity estimates can be done routinely using the method outlined in this paper.
引用
收藏
页数:9
相关论文
共 25 条
[1]   SuperDARN interferometry: Meteor echoes and electron densities from groundscatter [J].
Andre, D ;
Sofko, GJ ;
Baker, K ;
MacDougall, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A4) :7003-7015
[2]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P453, DOI 10.1007/s11214-008-9378-4
[3]  
[Anonymous], 1964, Propagation of Electromagnetic waves in Plasmas
[4]   HF RADAR SIGNATURES OF THE CUSP AND LOW-LATITUDE BOUNDARY-LAYER [J].
BAKER, KB ;
DUDENEY, JR ;
GREENWALD, RA ;
PINNOCK, M ;
NEWELL, PT ;
RODGER, AS ;
MATTIN, N ;
MENG, CI .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A5) :7671-7695
[5]   The Cluster Magnetic Field Investigation:: overview of in-flight performance and initial results [J].
Balogh, A ;
Carr, CM ;
Acuña, MH ;
Dunlop, MW ;
Beek, TJ ;
Brown, P ;
Fornacon, KH ;
Georgescu, E ;
Glassmeier, KH ;
Harris, J ;
Musmann, G ;
Oddy, T ;
Schwingenschuh, K .
ANNALES GEOPHYSICAE, 2001, 19 (10-12) :1207-1217
[6]   Topside Ionogram Scaler With True Height Algorithm (TOPIST): Automated processing of ISIS topside ionograms. [J].
Bilitza, D ;
Huang, XQ ;
Reinisch, BW ;
Benson, RF ;
Hills, HK ;
Schar, WB .
RADIO SCIENCE, 2004, 39 (01)
[7]   International Reference Ionosphere 2000 [J].
Bilitza, D .
RADIO SCIENCE, 2001, 36 (02) :261-275
[8]  
Born M., 1959, PRINCIPLES OPTICS EL
[9]  
Budden K.G., 1961, Radio Waves in the Ionosphere, Vfirst
[10]   A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system [J].
Davies, JA ;
Lester, M ;
Milan, SE ;
Yeoman, TK .
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1999, 17 (07) :892-902