On several kinds of sums of balancing numbers

被引:0
作者
Komatsu, Takao [1 ]
Panda, Gopal Krishna [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Natl Inst Technol, Rourkela, India
关键词
Balancing numbers; Lucas-balancing numbers; reciprocal sums; CONVOLUTION IDENTITIES; CAUCHY NUMBERS; PRODUCTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The balancing numbers B-n (n = 0,1, ...) are solutions of the binary recurrence B-n = 6B(n-1) - Bn-2 (n >= 2) with B-0 = 0 and B-1 = 1. In this paper we show several relations about the sums of product of two balancing numbers of the type Sigma(m=0Bkm+r Bk(n-m)+r)-B-n (k > r >= 0) and the alternating sum of reciprocal of balancing numbers [Sigma(infinity )(k=n)1/B-lk)(-1)]. Similar results are also obtained for Lucas-balancing numbers C-n (n 0, 1, ...), satisfying the binary recurrence C-n = 6C(n-1) - Cn-2 (n >= 2 ) with C-0 = 1 and C-1 = 3. Some binomial sums involving these numbers are also explored.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 31 条
[1]   Convolution identities and lacunary recurrences for Bernoulli numbers [J].
Agoh, Takashi ;
Dilcher, Karl .
JOURNAL OF NUMBER THEORY, 2007, 124 (01) :105-122
[2]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[3]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[4]   HOUSE PROBLEM [J].
FINKELSTEIN, R .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10) :1082-+
[5]  
Holliday S.H., 2011, Integers, V11A, P11, DOI DOI 10.1515/INTEG.2011.031
[6]   Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers [J].
Kamano, Ken .
JOURNAL OF INTEGER SEQUENCES, 2010, 13 (05)
[7]   Sums of products of hypergeometric Bernoulli numbers [J].
Kamano, Ken .
JOURNAL OF NUMBER THEORY, 2010, 130 (10) :2259-2271
[8]  
Karaatli 0., 2014, IRMATH SOC B, V73, P29
[9]  
Keskin R, 2012, J INTEGER SEQ, V15
[10]   CONVOLUTION IDENTITIES FOR CAUCHY NUMBERS [J].
Komatsu, T. .
ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) :76-91