Nonlinear mobility continuity equations and generalized displacement convexity

被引:60
作者
Carrillo, J. A. [2 ]
Lisini, S. [1 ]
Savare, G. [1 ]
Slepcev, D. [3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Gradient flows; Displacement convexity; Nonlinear diffusion equations; Parabolic equations; Wasserstein distance; Nonlinear mobility; KELLER-SEGEL MODEL; WASSERSTEIN DISTANCE; INTERACTING GASES; EULERIAN CALCULUS; CHEMOTAXIS; PREVENTION; DIFFUSION; PRINCIPLE; INEQUALITIES; EXISTENCE;
D O I
10.1016/j.jfa.2009.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the geometry of the space of Borel measures endowed with a distance that is defined by generalizing the dynamical formulation of the Wasserstein distance to concave, nonlinear mobilities. We investigate the energy landscape of internal, potential, and interaction energies. For the internal energy, we give an explicit sufficient condition for geodesic convexity which generalizes the condition of McCann. We take an eulerian approach that does not require global information oil the geodesics. As by-product, we obtain existence, stability, and contraction results for the semigroup obtained by solving the homogeneous Neumann boundary value problem fora nonlinear diffusion equation in a convex bounded domain. For the potential energy and the interaction energy, we present a nonrigorous argument indicating that they are not displacement semiconvex. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1273 / 1309
页数:37
相关论文
共 43 条
  • [1] Geometric inequalities via a general comparison principle for interacting gases
    Agueh, M
    Ghoussoub, N
    Kang, X
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) : 215 - 244
  • [2] Ambrosio L., 2006, HDB DIFFERENTIAL EQU, V3, P1
  • [3] Ambrosio L., 2005, LECT MATH
  • [4] [Anonymous], 2008, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
  • [5] [Anonymous], 2003, TOPICS OPTIMAL TRANS
  • [6] [Anonymous], NONLINEAR FOKKERPLAN
  • [7] [Anonymous], 1985, MONOGR STUD MATH
  • [9] Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
  • [10] Bertozzi A. L., 1998, Notices Amer. Math. Soc, V45, P689