Packing circles and spheres on surfaces

被引:45
作者
Schiftner, Alexander [1 ]
Hoebinger, Mathias
Wallner, Johannes [3 ]
Pottmann, Helmut [2 ]
机构
[1] TU Wien, Evolute, Vienna, Austria
[2] TU Wien, KAUST, Vienna, Austria
[3] Graz Univ Technol, Graz, Austria
来源
ACM TRANSACTIONS ON GRAPHICS | 2009年 / 28卷 / 05期
关键词
computational differential geometry; architectural geometry; computational conformal geometry; freeform surface; circle packing; sphere packing; supporting structures; DIAGRAMS; PATTERNS;
D O I
10.1145/1618452.1618485
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 25 条
  • [1] Centroidal Voronol diagrams for isotropic surface remeshing
    Alliez, P
    de Verdière, TC
    Devillers, O
    Isenburg, M
    [J]. GRAPHICAL MODELS, 2005, 67 (03) : 204 - 231
  • [2] POWER DIAGRAMS - PROPERTIES, ALGORITHMS AND APPLICATIONS
    AURENHAMMER, F
    [J]. SIAM JOURNAL ON COMPUTING, 1987, 16 (01) : 78 - 96
  • [3] BACH K, 1990, PUBL I LIGHTWEIGHT S, V33
  • [4] Bobenko A., 2008, GRADUATE STUDIES MAT, V98
  • [5] Variational principles for circle patterns and Koebe's theorem
    Bobenko, AI
    Springborn, BA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (02) : 659 - 689
  • [6] Minimal surfaces from circle patterns: Geometry from combinatorics
    Bobenko, Alexander I.
    Hoffmann, Tim
    Springborn, Boris A.
    [J]. ANNALS OF MATHEMATICS, 2006, 164 (01) : 231 - 264
  • [7] Cecil T.E., 1992, Lie Sphere Geometry: With Applications to Submanifolds
  • [8] Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate
    Chen, Yanqing
    Davis, Timothy A.
    Hager, William W.
    Rajamanickam, Sivasankaran
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03):
  • [9] Gu XD., 2008, Computational conformal geometry. Advanced Lectures in Mathematics, pvi+295
  • [10] FIXED-POINTS, KOEBE UNIFORMIZATION AND CIRCLE PACKINGS
    HE, ZX
    SCHRAMM, O
    [J]. ANNALS OF MATHEMATICS, 1993, 137 (02) : 369 - 406