共 2 条
FIRST-ORDER METHODS FOR THE IMPATIENT: SUPPORT IDENTIFICATION IN FINITE TIME WITH CONVERGENT FRANK-WOLFE VARIANTS
被引:15
|作者:
Bomze, Immanuel M.
[1
,2
]
Rinaldi, Francesco
[3
]
Bulo, Samuel Rota
[4
]
机构:
[1] Univ Vienna, ISOR, VCOR, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Vienna, Ds UniVie, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[4] Mapillary Res, Gartengasse 19-2, A-8010 Graz, Austria
关键词:
surface identification;
manifold identification;
active set;
finite convergence;
ACTIVE-SET ALGORITHM;
CONSTRAINTS;
COMPLEXITY;
GRADIENT;
D O I:
10.1137/18M1206953
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we focus on the problem of minimizing a nonconvex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points, both when using exact and Armijo line search. Then we show that the algorithms identify the support in a finite number of iterations (the identification result does not hold for the classic Frank-Wolfe algorithm). This, to the best of our knowledge, is the first time a manifold identification property has been shown for such a class of methods.
引用
收藏
页码:2211 / 2226
页数:16
相关论文