The numerical prediction of planar viscoelastic contraction flows using the pom-pom model and higher-order finite volume schemes

被引:22
作者
Aguayo, J. P.
Phillips, P. M.
Phillips, T. N.
Tamaddon-Jahromi, H. R.
Snigerev, B. A.
Webster, M. F.
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
[2] Univ Coll Swansea, Dept Comp Sci, Swansea SA2 8PP, W Glam, Wales
[3] Univ Wales, Dept Math, Aberystwyth SY23 3BZ, Dyfed, Wales
基金
英国工程与自然科学研究理事会;
关键词
pom-pom model; pure finite volume; hybrid finite element/volume; abrupt contraction; viscoelasticity;
D O I
10.1016/j.jcp.2006.05.039
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended pom-pom (SXPP) model [M. Aboubacar, J.P. Aguayo, P.M. Phillips, T.N. Phillips, H.R. Tamaddon-Jahromi, B.A. Snigerev, M.F. Webster, Modelling pom-pom type models with high-order finite volume schemes, J. Non-Newtonian Fluid Mech. 126 (2005) 207-220], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical techniques employed are time-stepping algorithms: one of hybrid finite element/volume type, the other of pure finite volume form. The pure finite volume scheme is a staggered-grid cell-centred scheme based on area-weighting and a semi-Lagrangian formulation. This may be implemented on structured or unstructured rectangular grids, utilising backtracking along the solution characteristics in time. For the hybrid scheme, we solve the momentum-continuity equations by a fractional-staged Taylor-Galerkin pressure-correction procedure and invoke a cell-vertex finite volume scheme for the constitutive law. A comparison of the two finite volume approaches is presented, concentrating upon the new features posed by the pom-pom class of models in this context of non-smooth flows. Here, the dominant feature of larger shear and extension in the entry zone influences both stress and stretch, so that larger stretch develops around the re-entrant corner zone as Weissenberg number increases, whilst correspondingly stress levels decline. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:586 / 611
页数:26
相关论文
共 44 条
[11]   Molecular drag-strain coupling in branched polymer melts [J].
Blackwell, RJ ;
McLeish, TCB ;
Harlen, OG .
JOURNAL OF RHEOLOGY, 2000, 44 (01) :121-136
[12]  
BOGER DV, 1987, ANNU REV FLUID MECH, V19, P157, DOI 10.1146/annurev.fluid.19.1.157
[13]  
Carew E.O., 1994, NUMER METH PART D E, V10, P171
[14]   A TAYLOR-PETROV-GALERKIN ALGORITHM FOR VISCOELASTIC FLOW [J].
CAREW, EOA ;
TOWNSEND, P ;
WEBSTER, MF .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1993, 50 (2-3) :253-287
[15]   Numerical evaluation of three dimensional effects in planar flow birefringence [J].
Clemeur, N ;
Rutgers, RPG ;
Debbaut, B .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 123 (2-3) :105-120
[16]  
Clemeur N, 2003, RHEOL ACTA, V42, P217, DOI [10.1007/S00397-002-0279-2, 10.1007/s00397-002-0279-2]
[17]  
Doi M., 1986, The Theory of Polymer Dynamics
[18]   FURTHER REMARKS ON THE LIP-VORTEX MECHANISM OF VORTEX ENHANCEMENT IN PLANAR-CONTRACTION FLOWS [J].
EVANS, RE ;
WALTERS, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1989, 32 (01) :95-105
[19]   FLOW CHARACTERISTICS ASSOCIATED WITH ABRUPT CHANGES IN GEOMETRY IN THE CASE OF HIGHLY ELASTIC LIQUIDS [J].
EVANS, RE ;
WALTERS, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1986, 20 :11-29
[20]  
Hassager, 1988, J NONNEWTONIAN FLUID, V29, P2, DOI [DOI 10.1016/0377-0257(88)85060-2, 10.1016/0377-0257(88)85060-2]