Calibration of a six-axis parallel manipulator based on BP neural network

被引:27
作者
Zhang, Dianjin [1 ]
Zhang, Guangyu [1 ]
Li, Longqiu [1 ]
机构
[1] Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China
来源
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION | 2019年 / 46卷 / 05期
基金
中国国家自然科学基金;
关键词
Calibration; Parallel manipulator; BP neural network; Position accuracy; KINEMATIC CALIBRATION; ROBOT;
D O I
10.1108/IR-12-2018-0248
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose This paper aims to provide a simple and flexible calibration method of parallel manipulators for improving the position accuracy only using partial pose information. Design/methodology/approach The overall idea of this method is to use BP neural network to fit the relationship between calibration parameters and measurement parameters and then adjust calibration parameters according to measurements. Findings The calibration method significantly improves the position accuracy of the six-axis parallel manipulator. Simulation shows that the accuracy can be improved by increasing the number of positions consisted of samples to train BP neural network, and when the position number is increased, the descent velocity of fitting error is decreased. Originality/value The method is general for various parallel mechanisms and simple for measurement process. It can be applied to the calibration of various mechanisms without analyzing the mathematical relationship between measurements and calibration parameters. The measurement parameters can be flexibly selected to simplify measurement process, which saves calibration cost and time.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 27 条
[1]   Experimental kinematic calibration of parallel manipulators using a relative position error measurement system [J].
Abtahi, Mansour ;
Pendar, Hodjat ;
Alasty, Aria ;
Vossoughi, Gholamreza .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2010, 26 (06) :799-804
[2]   On efficiently combining limited-memory and trust-region techniques [J].
Burdakov O. ;
Gong L. ;
Zikrin S. ;
Yuan Y.-X. .
Mathematical Programming Computation, 2017, 9 (01) :101-134
[3]  
Da-Yong Yu, 2008, 2008 IEEE International Conference on Mechatronics and Automation (ICMA2008), P750, DOI 10.1109/ICMA.2008.4798850
[4]   Kinematic calibration of a Gough-Stewart platform using an onmidirectional camera [J].
Dallej, Tej ;
Hadj-Abdelkader, Hicham ;
Andreff, Nicolas ;
Martinet, Philippe .
2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, :4666-+
[5]  
Daney D, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P147
[6]   Neural network solution for forward kinematics problem of HEXA parallel robot [J].
Dehghani, M. ;
Ahmadi, M. ;
Khayatian, A. ;
Eghtesad, M. ;
Farid, M. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :4214-+
[7]   Vision-based calibration of a Hexa parallel robot [J].
Dehghani, Mehdi ;
Ahmadi, Mahdi ;
Khayatian, Alireza ;
Eghtesad, Mohamad ;
Yazdi, Mehran .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2014, 41 (03) :296-310
[8]  
Gao M, 2003, IEEE SYS MAN CYBERN, P2797
[9]   Improving the Forward Kinematics of Cable-Driven Parallel Robots Through Cable Angle Sensors [J].
Garant, Xavier ;
Campeau-Lecours, Alexandre ;
Cardou, Philippe ;
Gosselin, Clement .
CABLE-DRIVEN PARALLEL ROBOTS, 2018, 53 :167-179
[10]  
Ghanbari A., 2013, World Sci. J., V1, P148