Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2

被引:88
作者
Panich, Justin [1 ]
Fong, Bonnie [1 ]
Singer, Steven W. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
关键词
RALSTONIA-EUTROPHA H16; ALCALIGENES-EUTROPHUS; GENE-EXPRESSION; TRANSCRIPTIONAL REGULATION; HETEROLOGOUS EXPRESSION; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; CARBON; SYSTEM; GROWTH;
D O I
10.1016/j.tibtech.2021.01.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances inmetabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
引用
收藏
页码:412 / 424
页数:13
相关论文
共 110 条
  • [71] Martínez-García E, 2020, NUCLEIC ACIDS RES, V48, pD1164, DOI [10.1093/nar/gkz1024, 10.1093/nar/gkaa114]
  • [72] Production of jet fuel precursor monoterpenoids from engineered Escherichia coli
    Mendez-Perez, Daniel
    Alonso-Gutierrez, Jorge
    Hu, Qijun
    Molinas, Margaux
    Baidoo, Edward E. K.
    Wang, George
    Chan, Leanne J. G.
    Adams, Paul D.
    Petzold, Christopher J.
    Keasling, Jay D.
    Lee, Taek S.
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (08) : 1703 - 1712
  • [73] Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species
    Menon, Balaraj B.
    Dou, Zhicheng
    Heinhorst, Sabine
    Shively, Jessup M.
    Cannon, Gordon C.
    [J]. PLOS ONE, 2008, 3 (10):
  • [74] Mertens N, 1996, BIOL CHEM, V377, P811
  • [75] Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones
    Mueller, Jana
    MacEachran, Daniel
    Burd, Helcio
    Sathitsuksanoh, Noppadon
    Bi, Changhao
    Yeh, Yi-Chun
    Lee, Taek Soon
    Hillson, Nathan J.
    Chhabra, Swapnil R.
    Singer, Steven W.
    Beller, Harry R.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (14) : 4433 - 4439
  • [76] Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator
    Nangle, Shannon N.
    Ziesack, Marika
    Buckley, Sarabeth
    Trivedi, Disha
    Loh, Daniel M.
    Nocera, Daniel G.
    Silver, Pamela A.
    [J]. METABOLIC ENGINEERING, 2020, 62 : 207 - 220
  • [77] CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens
    Noirot-Gros, Marie-Francoise
    Forrester, Sara
    Malato, Grace
    Larsen, Peter E.
    Noirot, Philippe
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [78] Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron
    Park, Jong Myoung
    Jang, Yu-Sin
    Kim, Tae Yong
    Lee, Sang Yup
    [J]. FEMS MICROBIOLOGY LETTERS, 2010, 309 (02) : 193 - 200
  • [79] Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM):: functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants
    Price, G. Dean
    Badger, Murray R.
    Woodger, Fiona J.
    Long, Ben M.
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (07) : 1441 - 1461
  • [80] Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism
    Price, G. Dean
    [J]. PHOTOSYNTHESIS RESEARCH, 2011, 109 (1-3) : 47 - 57