Registration of spatio-temporal point clouds of plants for phenotyping

被引:33
作者
Chebrolu, Nived [1 ]
Magistri, Federico [1 ]
Labe, Thomas [1 ]
Stachniss, Cyrill [1 ]
机构
[1] Univ Bonn, Photogrammetry & Robot Lab, Bonn, Germany
关键词
SKELETON; LIDAR; RECONSTRUCTION; CAPTURE; GROWTH; MOTION; SYSTEM;
D O I
10.1371/journal.pone.0247243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant phenotyping is a central task in crop science and plant breeding. It involves measuring plant traits to describe the anatomy and physiology of plants and is used for deriving traits and evaluating plant performance. Traditional methods for phenotyping are often time-consuming operations involving substantial manual labor. The availability of 3D sensor data of plants obtained from laser scanners or modern depth cameras offers the potential to automate several of these phenotyping tasks. This automation can scale up the phenotyping measurements and evaluations that have to be performed to a larger number of plant samples and at a finer spatial and temporal resolution. In this paper, we investigate the problem of registering 3D point clouds of the plants over time and space. This means that we determine correspondences between point clouds of plants taken at different points in time and register them using a new, non-rigid registration approach. This approach has the potential to form the backbone for phenotyping applications aimed at tracking the traits of plants over time. The registration task involves finding data associations between measurements taken at different times while the plants grow and change their appearance, allowing 3D models taken at different points in time to be compared with each other. Registering plants over time is challenging due to its anisotropic growth, changing topology, and non-rigid motion in between the time of the measurements. Thus, we propose a novel approach that first extracts a compact representation of the plant in the form of a skeleton that encodes both topology and semantic information, and then use this skeletal structure to determine correspondences over time and drive the registration process. Through this approach, we can tackle the data association problem for the time-series point cloud data of plants effectively. We tested our approach on different datasets acquired over time and successfully registered the 3D plant point clouds recorded with a laser scanner. We demonstrate that our method allows for developing systems for automated temporal plant-trait analysis by tracking plant traits at an organ level.
引用
收藏
页数:25
相关论文
共 81 条
[1]  
Alenya G., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P3408, DOI 10.1109/ICRA.2011.5980092
[2]   Development and evaluation of a field-based high-throughput phenotyping platform [J].
Andrade-Sanchez, Pedro ;
Gore, Michael A. ;
Heun, John T. ;
Thorp, Kelly R. ;
Carmo-Silva, A. Elizabete ;
French, Andrew N. ;
Salvucci, Michael E. ;
White, Jeffrey W. .
FUNCTIONAL PLANT BIOLOGY, 2014, 41 (01) :68-79
[3]  
[Anonymous], 1992, GRAPH INTER
[4]  
[Anonymous], LEMNATEC PLANT PHENO
[5]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[6]   BreedVision - A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding [J].
Busemeyer, Lucas ;
Mentrup, Daniel ;
Moeller, Kim ;
Wunder, Erik ;
Alheit, Katharina ;
Hahn, Volker ;
Maurer, Hans Peter ;
Reif, Jochen C. ;
Wuerschum, Tobias ;
Mueller, Joachim ;
Rahe, Florian ;
Ruckelshausen, Arno .
SENSORS, 2013, 13 (03) :2830-2847
[7]  
Carlone L., 2015, ICRA WORKSH ROB AGR
[8]   A Quantitative Framework for Flower Phenotyping in Cultivated Carnation (Dianthus caryophyllus L.) [J].
Chacon, Borja ;
Ballester, Roberto ;
Birlanga, Virginia ;
Rolland-Lagan, Anne-Gaelle ;
Manuel Perez, Jose .
PLOS ONE, 2013, 8 (12)
[9]   Robust Long-Term Registration of UAV Images of Crop Fields for Precision Agriculture [J].
Chebrolu, Nived ;
Laebe, Thomas ;
Stachniss, Cyrill .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :3090-3097
[10]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554