Nonuniform sampling in principal shift-invariant subspaces of mixed Lebesgue spaces Lp,q(Rd+1)

被引:35
作者
Li, Rui [1 ]
Liu, Bei [1 ]
Liu, Rui [2 ,3 ]
Zhang, Qingyue [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed Lebesgue spaces; Nonuniform sampling; Shift-invariant subspaces; RECONSTRUCTION; OPERATORS; THEOREM; LP;
D O I
10.1016/j.jmaa.2017.04.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the nonuniform sampling and reconstruction problem in shift-invariant subspaces of mixed Lebesgue spaces. We first show that shift invariant subspaces in mixed Lebesgue spaces L-p,L-q (Rd+1) can be well-defined. Then we propose that the sampling problem in shift-invariant subspaces of mixed Lebesgue spaces is well-posed. At last, the nonuniform samples {f(x(j), y(k)) : k, j is an element of J} of a function f belonging to a shift-invariant subspace of mixed Lebesgue spaces are proposed, and we give a fast reconstruction algorithm that allows exact reconstruction off as long as the sampling set X = {(x(j), y(k)) : k, j is an element of J} is sufficiently dense. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:928 / 941
页数:14
相关论文
共 23 条
[1]   SAMPLING PROCEDURES IN FUNCTION-SPACES AND SYMPTOTIC EQUIVALENCE WITH SHANNON SAMPLING THEORY [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (1-2) :1-21
[2]   Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces:: The Lp-theory [J].
Aldroubi, A ;
Feichtinger, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2677-2686
[3]   Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces [J].
Aldroubi, A ;
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (01) :93-103
[4]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[5]  
[Anonymous], 2006, HARMONIC ANAL APPL
[6]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[7]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[8]  
Benedetto JJ, 2001, APPL NUM HARM ANAL, P1
[9]   CALDERON-ZYGMUND THEORY FOR OPERATOR-VALUED KERNELS [J].
DEFRANCIA, JLR ;
RUIZ, FJ ;
TORREA, JL .
ADVANCES IN MATHEMATICS, 1986, 62 (01) :7-48