Dynamics of light particles in oscillating cellular flows

被引:3
作者
Festa, Roberto [1 ]
Mazzino, Andrea [1 ,2 ,3 ]
Todini, Manuela [1 ]
机构
[1] Univ Genoa, Dept Phys, I-16146 Genoa, Italy
[2] Ist Nazl Fis Nucl, I-16146 Genoa, Italy
[3] CNISM, I-16146 Genoa, Italy
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
关键词
chaos; fluid oscillations; Monte Carlo methods; suspensions; white noise; STRONG ANOMALOUS DIFFUSION; MOTION; CONVECTION; TRANSPORT; SPHERE;
D O I
10.1103/PhysRevE.80.035301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of light particles in chaotic oscillating cellular flows is investigated both analytically and numerically by means of Monte Carlo simulations. At level of linear analysis (in the oscillation amplitude) we determined how the known fixed points relative to the stationary cellular flow deform into closed stable trajectories. Once the latter have been analytically determined, we numerically show that they possess the dynamical role of attracting all asymptotic trajectories for a wide range of parameters values. The robustness of the attracting trajectories is tested by adding a white-noise contribution to the particle equation of motion. As a result, attracting trajectories persist up to a critical Peacuteclet number above which an average rising velocity sets in. Possible implications of our results on the long-standing problem related to the explanation of the observed oceanic plankton patchiness will be also discussed.
引用
收藏
页数:4
相关论文
共 19 条
  • [1] The terminal velocity of sedimenting particles in a flowing fluid
    Afonso, Marco Martins
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (38)
  • [2] Simple stochastic models showing strong anomalous diffusion
    Andersen, KH
    Castiglione, P
    Mazzino, A
    Vulpiani, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (03) : 447 - 452
  • [3] [Anonymous], 1992, Applications of mathematics
  • [4] Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
    Babiano, A
    Cartwright, JHE
    Piro, O
    Provenzale, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5764 - 5767
  • [5] Planktonic Communities and Chaotic Advection in Dynamical Models of Langmuir Circulation
    M.A. Bees
    [J]. Applied Scientific Research, 1997, 59 (2-3) : 141 - 158
  • [6] On strong anomalous diffusion
    Castiglione, P
    Mazzino, A
    Muratore-Ginanneschi, P
    Vulpiani, A
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) : 75 - 93
  • [7] Resonant enhanced diffusion in time-dependent flow
    Castiglione, P
    Crisanti, A
    Mazzino, A
    Vergassola, M
    Vulpiani, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (35): : 7197 - 7210
  • [8] TRANSITION TO TIME-DEPENDENT CONVECTION
    CLEVER, RM
    BUSSE, FH
    [J]. JOURNAL OF FLUID MECHANICS, 1974, 65 (OCT2) : 625 - 645
  • [9] LAGRANGIAN CHAOS - TRANSPORT, MIXING AND DIFFUSION IN FLUIDS
    CRISANTI, A
    FALCIONI, M
    VULPIANI, A
    PALADIN, G
    [J]. RIVISTA DEL NUOVO CIMENTO, 1991, 14 (12): : 1 - 80
  • [10] Phytoplankton depth profiles and their transitions near the critical sinking velocity
    Kolokolnikov, Theodore
    Ou, Chunhua
    Yuan, Yuan
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (01) : 105 - 122