Machine and deep learning approaches for cancer drug repurposing

被引:172
作者
Issa, Naiem T. [1 ]
Stathias, Vasileios [2 ]
Schurer, Stephan [2 ]
Dakshanamurthy, Sivanesan [3 ]
机构
[1] Univ Miami, Sch Med, Dr Phillip Frost Dept Dermatol & Cutaneous Surg, Miami, FL USA
[2] Univ Miami, Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33101 USA
[3] Georgetown Univ, Med Ctr, Dept Oncol, Lombardi Comprehens Canc Ctr, Washington, DC 20007 USA
关键词
Drug repurposing; Drug discovery; Machine learning; Deep learning; Artificial intelligence; BIOASSAY ONTOLOGY BAO; REGULATORY T-CELLS; CONNECTIVITY MAP; INDOLEAMINE 2,3-DIOXYGENASE; MOLECULAR DOCKING; NEURAL-NETWORKS; DISCOVERY; INHIBITORS; TARGET; PREDICTION;
D O I
10.1016/j.semcancer.2019.12.011
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Knowledge of the underpinnings of cancer initiation, progression and metastasis has increased exponentially in recent years. Advanced "omics" coupled with machine learning and artificial intelligence (deep learning) methods have helped elucidate targets and pathways critical to those processes that may be amenable to pharmacologic modulation. However, the current anti-cancer therapeutic armamentarium continues to lag behind. As the cost of developing a new drug remains prohibitively expensive, repurposing of existing approved and investigational drugs is sought after given known safety profiles and reduction in the cost barrier. Notably, successes in oncologic drug repurposing have been infrequent. Computational in-silico strategies have been developed to aid in modeling biological processes to find new disease-relevant targets and discovering novel drug-target and drug-phenotype associations. Machine and deep learning methods have especially enabled leaps in those successes. This review will discuss these methods as they pertain to cancer biology as well as immunomodulation for drug repurposing opportunities in oncologic diseases.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 145 条
[61]   The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations [J].
Keenan, Alexandra B. ;
Jenkins, Sherry L. ;
Jagodnik, Kathleen M. ;
Koplev, Simon ;
He, Edward ;
Torre, Denis ;
Wang, Zichen ;
Dohlman, Anders B. ;
Silverstein, Moshe C. ;
Lachmann, Alexander ;
Kuleshov, Maxim V. ;
Ma'ayan, Avi ;
Stathias, Vasileios ;
Terryn, Raymond ;
Cooper, Daniel ;
Forlin, Michele ;
Koleti, Amar ;
Vidovic, Dusica ;
Chung, Caty ;
Schurer, Stephan C. ;
Vasiliauskas, Jouzas ;
Pilarczyk, Marcin ;
Shamsaei, Behrouz ;
Fazel, Mehdi ;
Ren, Yan ;
Niu, Wen ;
Clark, Nicholas A. ;
White, Shana ;
Mahi, Naim ;
Zhang, Lixia ;
Kouril, Michal ;
Reichard, John F. ;
Sivaganesan, Siva ;
Medvedovic, Mario ;
Meller, Jaroslaw ;
Koch, Rick J. ;
Birtwistle, Marc R. ;
Iyengar, Ravi ;
Sobie, Eric A. ;
Azeloglu, Evren U. ;
Kaye, Julia ;
Osterloh, Jeannette ;
Haston, Kelly ;
Kalra, Jaslin ;
Finkbiener, Steve ;
Li, Jonathan ;
Milani, Pamela ;
Adam, Miriam ;
Escalante-Chong, Renan ;
Sachs, Karen .
CELL SYSTEMS, 2018, 6 (01) :13-24
[62]   Predicting new molecular targets for known drugs [J].
Keiser, Michael J. ;
Setola, Vincent ;
Irwin, John J. ;
Laggner, Christian ;
Abbas, Atheir I. ;
Hufeisen, Sandra J. ;
Jensen, Niels H. ;
Kuijer, Michael B. ;
Matos, Roberto C. ;
Tran, Thuy B. ;
Whaley, Ryan ;
Glennon, Richard A. ;
Hert, Jerome ;
Thomas, Kelan L. H. ;
Edwards, Douglas D. ;
Shoichet, Brian K. ;
Roth, Bryan L. .
NATURE, 2009, 462 (7270) :175-U48
[63]   PubChem 2019 update: improved access to chemical data [J].
Kim, Sunghwan ;
Chen, Jie ;
Cheng, Tiejun ;
Gindulyte, Asta ;
He, Jia ;
He, Siqian ;
Li, Qingliang ;
Shoemaker, Benjamin A. ;
Thiessen, Paul A. ;
Yu, Bo ;
Zaslavsky, Leonid ;
Zhang, Jian ;
Bolton, Evan E. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1102-D1109
[64]   Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data [J].
Koleti, Amar ;
Terryn, Raymond ;
Stathias, Vasileios ;
Chung, Caty ;
Cooper, Daniel J. ;
Turner, John P. ;
Vidovic, Dusica ;
Forlin, Michele ;
Kelley, Tanya T. ;
D'Urso, Alessandro ;
Allen, Bryce K. ;
Torre, Denis ;
Jagodnik, Kathleen M. ;
Wang, Lily ;
Jenkins, Sherry L. ;
Mader, Christopher ;
Niu, Wen ;
Fazel, Mehdi ;
Mahi, Naim ;
Pilarczyk, Marcin ;
Clark, Nicholas ;
Shamsaei, Behrouz ;
Meller, Jarek ;
Vasiliauskas, Juozas ;
Reichard, John ;
Medvedovic, Mario ;
Ma'ayan, Avi ;
Pillai, Ajay ;
Schurer, Stephan C. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D558-D566
[65]   Praziquantel Targets M1 Macrophages and Ameliorates Splenomegaly in Chronic Schistosomiasis [J].
Kong, Delong ;
Zhou, Chunlei ;
Guo, Hongfei ;
Wang, Wei ;
Qiu, Jingfan ;
Liu, Xinjian ;
Liu, Jinfeng ;
Wang, Lijuan ;
Wang, Yong .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (01)
[66]   Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents [J].
Kumar, Vikash ;
Krishna, Shagun ;
Siddiqi, Mohammad Imran .
METHODS, 2015, 71 :64-70
[67]   A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties [J].
Kundu, Indra ;
Paul, Goutam ;
Banerjee, Raja .
RSC ADVANCES, 2018, 8 (22) :12127-12137
[68]   The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease [J].
Lamb, Justin ;
Crawford, Emily D. ;
Peck, David ;
Modell, Joshua W. ;
Blat, Irene C. ;
Wrobel, Matthew J. ;
Lerner, Jim ;
Brunet, Jean-Philippe ;
Subramanian, Aravind ;
Ross, Kenneth N. ;
Reich, Michael ;
Hieronymus, Haley ;
Wei, Guo ;
Armstrong, Scott A. ;
Haggarty, Stephen J. ;
Clemons, Paul A. ;
Wei, Ru ;
Carr, Steven A. ;
Lander, Eric S. ;
Golub, Todd R. .
SCIENCE, 2006, 313 (5795) :1929-1935
[69]   A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy [J].
Leone, Robert D. ;
Lo, Ying-Chun ;
Powell, Jonathan D. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2015, 13 :265-272
[70]   Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning [J].
Li, Fei ;
Liu, Weisong ;
Yu, Hong .
JMIR MEDICAL INFORMATICS, 2018, 6 (04) :32-45