Super-KN Hierarchy and Its Super-Hamiltonian Structure

被引:14
作者
Tao Si-Xing [1 ,2 ]
Xia Tie-Cheng [1 ]
Shi Hui [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shangqiu Normal Univ, Dept Math, Shangqiu 476000, Peoples R China
[3] Shangqiu Normal Univ, Dept Phys & Informat Engn, Shangqiu 476000, Peoples R China
基金
上海市自然科学基金;
关键词
Lie super algebra; super-trace identity; super-integrable system; super-Hamiltonian structure; INTEGRABLE SYSTEMS; SPECTRAL PROBLEM; LOOP ALGEBRA; LIE-ALGEBRAS; COUPLINGS;
D O I
10.1088/0253-6102/55/3/03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the basis of the constructed Lie super algebra, the super-isospectral problem of KN hierarchy is considered. Under the frame of the zero curvature equation, the super-KN hierarchy is obtained. Furthermore, its super-Hamiltonian structure is presented by using super-trace identity and it has super-bi-Hamiltonian structure.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 17 条
  • [1] A new loop algebra and two new Liouville integrable hierarchy
    Dong, Huan-He
    [J]. MODERN PHYSICS LETTERS B, 2007, 21 (11): : 663 - 673
  • [2] A (2+1)-dimensional multi-component AKNS integrable hierarchy and its expanding model
    Dong, Huan-he
    Gong, Xin-bo
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 945 - 950
  • [3] Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy
    Dong, Huan-he
    Wang, Xinzeng
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) : 4071 - 4077
  • [4] A Liouville integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem
    Fan, E
    [J]. PHYSICA A, 2001, 301 (1-4): : 105 - 113
  • [5] The quadratic-form identity for constructing the Hamiltonian structure of integrable systems
    Guo, FK
    Zhang, YF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (40): : 8537 - 8548
  • [6] Guo FK, 2009, COMMUN THEOR PHYS, V51, P39, DOI 10.1088/0253-6102/51/1/08
  • [7] An approach to generate superextensions of integrable systems
    Hu, XB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : 619 - 632
  • [8] HU XB, THESIS COMPUTING CTR
  • [9] A supertrace identity and its applications to superintegrable systems
    Ma, Wen-Xiu
    He, Jing-Song
    Qin, Zhen-Yun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [10] Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras
    Ma, Wen-Xiu
    Chen, Min
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (34): : 10787 - 10801