CAncer bioMarker Prediction Pipeline (CAMPP)-A standardized framework for the analysis of quantitative biological data

被引:7
作者
Terkelsen, Thilde [1 ,2 ]
Krogh, Anders [3 ]
Papaleo, Elena [1 ,2 ,4 ]
机构
[1] Danish Canc Soc, Computat Biol Lab, Res Ctr, Copenhagen, Denmark
[2] Ctr Autophagy Recycling & Dis, Copenhagen, Denmark
[3] Univ Copenhagen, Dept Biol, Unit Computat & RNA Biol, Copenhagen, Denmark
[4] Univ Copenhagen, Novo Nordisk Fdn, Fac Hlth & Med Sci, Translat Dis Syst Biol,Ctr Prot Res, Copenhagen, Denmark
关键词
BREAST-CANCER; GENE-EXPRESSION; SURVIVAL; PACKAGE; CLASSIFICATION; RESOURCE; MODELS; SEQ;
D O I
10.1371/journal.pcbi.1007665
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the improvement of -omics and next-generation sequencing (NGS) methodologies, along with the lowered cost of generating these types of data, the analysis of high-throughput biological data has become standard both for forming and testing biomedical hypotheses. Our knowledge of how to normalize datasets to remove latent undesirable variances has grown extensively, making for standardized data that are easily compared between studies. Here we present the CAncer bioMarker Prediction Pipeline (CAMPP), an open-source R-based wrapper () intended to aid bioinformatic software-users with data analyses. CAMPP is called from a terminal command line and is supported by a user-friendly manual. The pipeline may be run on a local computer and requires little or no knowledge of programming. To avoid issues relating to R-package updates, a renv .lock file is provided to ensure R-package stability. Data-management includes missing value imputation, data normalization, and distributional checks. CAMPP performs (I) k-means clustering, (II) differential expression/abundance analysis, (III) elastic-net regression, (IV) correlation and co-expression network analyses, (V) survival analysis, and (VI) protein-protein/miRNA-gene interaction networks. The pipeline returns tabular files and graphical representations of the results. We hope that CAMPP will assist in streamlining bioinformatic analysis of quantitative biological data, whilst ensuring an appropriate bio-statistical framework.
引用
收藏
页数:20
相关论文
共 80 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]   De novo pathway-based biomarker identification [J].
Alcaraz, Nicolas ;
List, Markus ;
Batra, Richa ;
Vandin, Fabio ;
Ditzel, Henrik J. ;
Baumbach, Jan .
NUCLEIC ACIDS RESEARCH, 2017, 45 (16)
[3]   Detecting Blood-Based Biomarkers in Metastatic Breast Cancer: A Systematic Review of Their Current Status and Clinical Utility [J].
Berghuis, A. M. Sofie ;
Koffijberg, Hendrik ;
Prakash, Jai ;
Terstappen, Leon W. M. M. ;
IJzerman, Maarten J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (02)
[4]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[5]   HiQuant: Rapid Postquantification Analysis of Large-Scale MS-Generated Proteomics Data [J].
Bryan, Kenneth ;
Jarboui, Mohamed-Ali ;
Raso, Cinzia ;
Bernal-Llinares, Manuel ;
McCann, Brendan ;
Rauch, Jens ;
Boldt, Karsten ;
Lynn, David J. .
JOURNAL OF PROTEOME RESEARCH, 2016, 15 (06) :2072-2079
[6]   Comparative analysis of missing value imputation methods to improve clustering and interpretation of microarray experiments [J].
Celton, Magalie ;
Malpertuy, Alain ;
Lelandais, Gaelle ;
de Brevern, Alexandre G. .
BMC GENOMICS, 2010, 11
[7]   PANDA-view: an easy-to-use tool for statistical analysis and visualization of quantitative proteomics data [J].
Chang, Cheng ;
Xu, Kaikun ;
Guo, Chaoping ;
Wang, Jinxia ;
Yan, Qi ;
Zhang, Jian ;
He, Fuchu ;
Zhu, Yunping .
BIOINFORMATICS, 2018, 34 (20) :3594-3596
[8]   miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions [J].
Chou, Chih-Hung ;
Shrestha, Sirjana ;
Yang, Chi-Dung ;
Chang, Nai-Wen ;
Lin, Yu-Ling ;
Liao, Kuang-Wen ;
Huang, Wei-Chi ;
Sun, Ting-Hsuan ;
Tu, Siang-Jyun ;
Lee, Wei-Hsiang ;
Chiew, Men-Yee ;
Tai, Chun-San ;
Wei, Ting-Yen ;
Tsai, Tzi-Ren ;
Huang, Hsin-Tzu ;
Wang, Chung-Yu ;
Wu, Hsin-Yi ;
Ho, Shu-Yi ;
Chen, Pin-Rong ;
Chuang, Cheng-Hsun ;
Hsieh, Pei-Jung ;
Wu, Yi-Shin ;
Chen, Wen-Liang ;
Li, Meng-Ju ;
Wu, Yu-Chun ;
Huang, Xin-Yi ;
Ng, Fung Ling ;
Buddhakosai, Waradee ;
Huang, Pei-Chun ;
Lan, Kuan-Chun ;
Huang, Chia-Yen ;
Weng, Shun-Long ;
Cheng, Yeong-Nan ;
Liang, Chao ;
Hsu, Wen-Lian ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D296-D302
[9]   Mechanisms of lapatinib resistance in HER2-driven breast cancer [J].
D'Amato, Valentina ;
Raimondo, Lucia ;
Formisano, Luigi ;
Giuliano, Mario ;
De Placido, Sabino ;
Rosa, Roberta ;
Bianco, Roberto .
CANCER TREATMENT REVIEWS, 2015, 41 (10) :877-883
[10]   Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes [J].
Dai, Xiaofeng ;
Xiang, Liangjian ;
Li, Ting ;
Bai, Zhonghu .
JOURNAL OF CANCER, 2016, 7 (10) :1281-1294