Spectral points of definite type and type p for linear operators and relations in Krein spaces

被引:10
作者
Azizov, T. Ya. [1 ]
Behrndt, J. [2 ]
Jonas, P.
Trunk, C. [3 ]
机构
[1] Voronezh State Univ, Dept Math, Voronezh 39400, Russia
[2] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
[3] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2011年 / 83卷
关键词
SELF-ADJOINT OPERATORS; PERTURBATIONS; COMPACT; PI(-); PI(+);
D O I
10.1112/jlms/jdq098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spectral points of positive and negative type, and type pi(+) and type pi(-) for closed linear operators and relations in Krein spaces are introduced with the help of approximative eigensequences. The main objective of the paper is to study these sign type properties in the non-self-adjoint case under various kinds of perturbations, for example, compact perturbations and perturbations small in the gap metric. Many of the obtained perturbation results are also new for the special case of bounded and unbounded self-adjoint operators in Krein spaces.
引用
收藏
页码:768 / 788
页数:21
相关论文
共 37 条
  • [1] [Anonymous], 1995, Classics in Mathematics
  • [2] [Anonymous], 2000, GRAD TEXT M
  • [3] Arens R., 1961, Pacific J. Math, V11, P9, DOI [10.2140/pjm.1961.11.9, DOI 10.2140/PJM.1961.11.9]
  • [4] Azizov T. Ya., 2003, SPECTRAL THEORY ITS, V2, P45
  • [5] Azizov T. Ya., 1990, UKR MAT ZH, V42, P1299
  • [6] Azizov TY, 2010, J OPERAT THEOR, V64, P401
  • [7] Compact and Finite Rank Perturbations of Closed Linear Operators and Relations in Hilbert Spaces
    Azizov, Tomas Ya.
    Behrndt, Jussi
    Jonas, Peter
    Trunk, Carsten
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (02) : 151 - 163
  • [8] Spectral points of type π+ and π- of self-adjoint operators in Krein spaces
    Azizov, TY
    Jonas, P
    Trunk, C
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) : 114 - 137
  • [9] Bayasgalan T, 1999, STUD SCI MATH HUNG, V35, P147
  • [10] On compact perturbations of locally definitizable selfadjoint relations in Krein spaces
    Behrndt, J
    Jonas, P
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (01) : 17 - 44