Cauchy Problem for Evolution Equations with Pseudo-Bessel Operators: I

被引:0
作者
Gorodetskii, V. V. [1 ]
Spizhavka, D. I. [1 ]
机构
[1] Chernovtsy Natl Univ, Chernovtsy, Ukraine
关键词
Cauchy Problem; Evolution Equation; Normed Space; Fundamental Solution; Generalize Shift;
D O I
10.1134/S001226611009003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the structure and properties of the fundamental solution of the Cauchy problem for the evolution equation with a pseudo-Bessel operator constructed on the basis of the symbol a(t, x; sigma) fixed at the point t = tau, x = xi.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 50 条
[41]   Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator [J].
L. N. Lyakhov ;
I. P. Polovinkin ;
E. L. Shishkina .
Doklady Mathematics, 2014, 90 :737-742
[42]   Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator [J].
Lyakhov, L. N. ;
Polovinkin, I. P. ;
Shishkina, E. L. .
DOKLADY MATHEMATICS, 2014, 90 (03) :737-742
[43]   Analyticity of the Cauchy problem for an integrable evolution equation [J].
Himonas, AA ;
Misiolek, G .
MATHEMATISCHE ANNALEN, 2003, 327 (03) :575-584
[44]   Analyticity of the Cauchy problem for an integrable evolution equation [J].
A. Alexandrou Himonas ;
Gerard Misiołek .
Mathematische Annalen, 2003, 327 :575-584
[45]   CAUCHY PROBLEM FOR STOCHASTIC NON-AUTONOMOUS EVOLUTION EQUATIONS GOVERNED BY NONCOMPACT EVOLUTION FAMILIES [J].
Chen, Pengyu ;
Li, Yongxiang ;
Zhang, Xuping .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03) :1531-1547
[46]   ON SOME PERTURBATIONS OF A STABLE PROCESS AND SOLUTIONS OF THE CAUCHY PROBLEM FOR A CLASS OF PSEUDO-DIFFERENTIAL EQUATIONS [J].
Osypchuk, M. M. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (01) :101-107
[47]   On the Cauchy problem for the evolution p-Laplacian equations with gradient term and source [J].
Lian, Songzhe ;
Yuan, Hongjun ;
Cao, Chunling ;
Gao, Wenjie ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :544-585
[48]   The Cauchy Problem for the Iterated Klein–Gordon Equation with the Bessel Operator [J].
Sh. T. Karimov .
Lobachevskii Journal of Mathematics, 2020, 41 :772-784
[49]   A Cauchy Problem for the Boussinesq-Love Equation with the Bessel Operator [J].
Karimov, Sh. ;
Oripov, Sh. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) :4520-4533
[50]   Evolution equations with Gel'fond-Leont'ev generalized differentiation operators: I [J].
Gorodetskii, V. V. ;
Shevchuk, N. M. .
DIFFERENTIAL EQUATIONS, 2008, 44 (04) :499-509