Cauchy Problem for Evolution Equations with Pseudo-Bessel Operators: I

被引:0
作者
Gorodetskii, V. V. [1 ]
Spizhavka, D. I. [1 ]
机构
[1] Chernovtsy Natl Univ, Chernovtsy, Ukraine
关键词
Cauchy Problem; Evolution Equation; Normed Space; Fundamental Solution; Generalize Shift;
D O I
10.1134/S001226611009003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the structure and properties of the fundamental solution of the Cauchy problem for the evolution equation with a pseudo-Bessel operator constructed on the basis of the symbol a(t, x; sigma) fixed at the point t = tau, x = xi.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 50 条
[21]   Cauchy Problem for Evolutionary Pseudodifferential Equations with Variable Symbols [J].
Horodets’kyi V.V. ;
Martynyuk O.V. ;
Petryshyn R.I. .
Journal of Mathematical Sciences, 2016, 212 (3) :234-253
[22]   Solution of the Cauchy problem for a hyperbolic equation of the fourth order with the Bessel operator by the method of transmutation operators [J].
Karimov, Shakhobiddin ;
Oripov, Shukrullo .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02)
[23]   Cauchy problem for evolution equations with an infinite-order differential operator: II [J].
V. V. Gorodetskii ;
R. S. Kolisnyk .
Differential Equations, 2007, 43 :1181-1193
[24]   Properties of solutions of the Cauchy problem for essentially infinite-dimensional evolution equations [J].
Mal'tsev A.Yu. .
Ukrainian Mathematical Journal, 2004, 56 (5) :790-798
[25]   Solution of the Cauchy problem for a hyperbolic equation of the fourth order with the Bessel operator by the method of transmutation operators [J].
Shakhobiddin Karimov ;
Shukrullo Oripov .
Boletín de la Sociedad Matemática Mexicana, 2023, 29
[26]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[27]   Global weak solutions of the Cauchy problem for semilinear pseudo-hyperbolic equations [J].
A. B. Aliev ;
A. A. Kazymov .
Differential Equations, 2009, 45 :175-185
[28]   Problem with pulse action for systems with Bessel–Kolmogorov operators [J].
M. I. Konarovs’ka .
Ukrainian Mathematical Journal, 2012, 64 :1078-1089
[29]   Cauchy problem for quasihyperbolic factorized differential equations with variable domains of discontinuous operators [J].
Lomovtsev, F. E. .
DIFFERENTIAL EQUATIONS, 2007, 43 (10) :1472-1477
[30]   Cauchy problem for quasihyperbolic factorized differential equations with variable domains of discontinuous operators [J].
F. E. Lomovtsev .
Differential Equations, 2007, 43 :1472-1477