Finite-Time Stabilization of Stochastic Systems With Partially Known Transition Probabilities

被引:17
作者
Luan, Xiao-li [1 ]
Liu, Fei [1 ]
Shi, Peng [2 ,3 ,4 ]
机构
[1] Jiangnan Univ, Inst Automat, Minist Educ, Key Lab Adv Control Light Ind Proc, Wuxi 21422, Peoples R China
[2] Victoria Univ, Sch Sci & Engn, Melbourne, Vic 8001, Australia
[3] Univ Glamorgan, Dept Comp & Math Sci, Pontypridd CF37 1DL, M Glam, Wales
[4] Univ S Australia, Sch Math & Stat, Mawson Lakes 5095, Australia
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 2011年 / 133卷 / 01期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Markovian jump systems; finite-time boundedness; finite-time stabilization; transition probabilities; JUMP LINEAR-SYSTEMS; OUTPUT-FEEDBACK;
D O I
10.1115/1.4002716
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of finite-time stabilization for a class of uncertain Markov jump systems with partially known transition probabilities is investigated. The main aim of this paper is to derive the finite-time stabilization criteria for the underlying systems when the transition probabilities are partially known and to design a state feedback stabilizing controller such that the trajectories of the system stay within a given bound in a fixed time interval. Sufficient conditions for the existence of the desired controller are established with the linear matrix inequalities framework. A numerical example is used to illustrate the effectiveness of the developed theoretic results. [DOI:10.1115/1.4002716]
引用
收藏
页数:6
相关论文
共 21 条
[1]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[2]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[3]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[4]   Finite-time stability of linear time-varying systems with jumps [J].
Amato, Francesco ;
Ambrosino, Roberto ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2009, 45 (05) :1354-1358
[5]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[6]  
[Anonymous], 1961, AUTOMATION REMOTE CO
[7]  
[Anonymous], 1961, AUTOMATION REMOTE CO
[8]  
Boukas El-Kebir, 2008, ICIC Express Letters, V2, P1
[9]   On stabilization of uncertain linear systems with jump parameters [J].
Boukas, EK ;
Shi, P ;
Benjelloun, K .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (09) :842-850
[10]   Output feedback control of Markov jump linear systems in continuous-time [J].
de Farias, DP ;
Geromel, JC ;
do Val, JBR ;
Costa, OLV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :944-949