Sobolev homeomorphic extensions

被引:8
作者
Koski, Aleksis [1 ]
Onninen, Jani [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
芬兰科学院;
关键词
Sobolev homeomorphisms; Sobolev extensions; Douglas condition; MAPPINGS;
D O I
10.4171/JEMS/1099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be l-connected Jordan domains, l is an element of N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism phi : partial derivative X (sic) partial derivative Y admits a Sobolev homeomorphic extension h:(X) over bar (sic) (Y) over bar in W-1,W-1(X, C). If instead X has s-hyperbolic growth with s > p - 1, we show the existence of such an extension in the Sobolev class W-1,W-p(X, C) for p is an element of(1, 2). Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be relaxed. We also consider the existence of W-1,W-2-homeomorphic extensions with given boundary data.
引用
收藏
页码:4065 / 4089
页数:25
相关论文
共 40 条
[1]  
Alessandrini G, 2001, ANN ACAD SCI FENN-M, V26, P249
[2]  
[Anonymous], 1989, TRANSL MATH MONOGR
[3]  
Antman S.S, 1995, Applied Mathematical Sciences, V107
[4]   Extremal mappings of finite distortion [J].
Astala, K. ;
Iwaniec, T. ;
Martin, G. J. ;
Onninen, J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :655-702
[5]  
Astala K., 2009, PRINCETON MATH SER, V48
[6]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[7]   INTERPOLATIONS BY BOUNDED ANALYTIC FUNCTIONS AND CORONA PROBLEM [J].
CARLESON, L .
ANNALS OF MATHEMATICS, 1962, 76 (03) :547-&
[8]  
Choquet G., 1945, B SCI MATH, V69, P156
[9]  
Ciarlet P. G, 1988, MATH ELASTICITY, V20
[10]   Solution of the problem of plateau [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) :263-321