Bumblebee field as a source of cosmological anisotropies

被引:30
作者
Maluf, R., V [1 ]
Neves, Juliano C. S. [2 ]
机构
[1] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed Alfenas, Inst Ciencia & Tecnol, Rodovia Jose Aurelio Vilela 11999, BR-37715400 Pocos De Caldas, MG, Brazil
关键词
cosmology of theories beyond the SM; modified gravity; MODEL; SINGULARITY; LIMITS;
D O I
10.1088/1475-7516/2021/10/038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, a bumblebee field is adopted in order to generate cosmological anisotropies. For that purpose, we assume a Bianchi I cosmology, as the background geom-etry, and a bumblebee field coupled to it. Bumblebee models are examples of a mechanism for the Lorentz symmetry violation by assuming a nonzero vacuum expectation value for the bumblebee field. When coupled to the Bianchi I geometry, which is not in agreement with a cosmological principle, the bumblebee field plays the role of a source of anisotropies and produces a preferred axis. Thus, a fraction of the cosmic anisotropies would come from the Lorentz symmetry violation. In the last part of the article, we try to assume an upper bound on the bumblebee field using the quadrupole and octopole moments of the cosmic microwave background radiation.
引用
收藏
页数:19
相关论文
共 38 条
[1]   Planck 2018 results: I. Overview and the cosmological legacy of Planck [J].
Aghanim, N. ;
Akrami, Y. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Desert, F. -X. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. ;
Donzelli, S. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]   Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters [J].
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Clements, D. L. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Desert, F. -X. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[3]   The nature of singularity in Bianchi I cosmological string gravity model with second order curvature corrections [J].
Alexeyev, S ;
Toporensky, A ;
Ustiansky, V .
PHYSICS LETTERS B, 2001, 509 (1-2) :151-156
[4]   Signals for Lorentz violation in post-Newtonian gravity [J].
Bailey, Quentin G. ;
Kostelecky, V. Alan .
PHYSICAL REVIEW D, 2006, 74 (04)
[5]   Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity [J].
Bluhm, R ;
Kostelecky, VA .
PHYSICAL REVIEW D, 2005, 71 (06) :1-17
[6]   Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity [J].
Bluhm, Robert ;
Fung, Shu-Hong ;
Kostelecky, V. Alan .
PHYSICAL REVIEW D, 2008, 77 (06)
[7]   Magneto-dilatonic Blanchi-I cosmology: isotropization and singularity problems [J].
Bronnikov, KA ;
Chudayeva, EN ;
Shikin, GN .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (14) :3389-3403
[8]   Cosmological implications of bumblebee vector models [J].
Capelo, Diogo ;
Paramos, Jorge .
PHYSICAL REVIEW D, 2015, 91 (10)
[9]   The dynamics of Bianchi I universes in Rn cosmologies with torsion [J].
Carloni, Sante ;
Vignolo, Stefano ;
Fabbri, Luca .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (20)
[10]   Exact Schwarzschild-like solution in a bumblebee gravity model [J].
Casana, R. ;
Cavalcante, A. ;
Poulis, F. P. ;
Santos, E. B. .
PHYSICAL REVIEW D, 2018, 97 (10)