Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water

被引:60
作者
Satilmis, Bekir [1 ,2 ]
Isik, Tugba [3 ]
Demir, Mustafa M. [3 ]
Uyar, Tamer [1 ]
机构
[1] Bilkent Univ, UNAM Natl Nanotechnol Res Ctr, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
[2] Ahi Evran Univ, Fac Sci & Arts, Dept Chem, TR-40100 Kirsehir, Turkey
[3] Izmir Inst Technol, Dept Mat Sci & Engn, TR-35430 Izmir, Turkey
关键词
Electrospinning; Amidoxime PIM-1; Nanofibers; Membrane; Uranyl adsorption; Water treatment; URANIUM EXTRACTION; EFFICIENT REMOVAL; SEAWATER; SEPARATION; MEMBRANES; ENERGY; HYDROLYSIS; ADSORPTION; NANOFIBERS; RECOVERY;
D O I
10.1016/j.apsusc.2018.10.210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Polymers of Intrinsic Microporosity (PIM-1) is considered as one of the most promising polymer candidates for adsorption applications owing to its high surface area and the ability to tailor the functionality for the targeted species. This study reports a facile method for the preparation of amidoxime functionalized PIM-1 fibrous membrane (AF-PIM-FM) by electrospinning technique and its practical use for the extraction of U(VI) ions from aqueous systems via column sorption under continuous flow. Fibrous membrane form of amidoxime functionalized PIM-1 (AF-PIM-FM) was prepared by electrospinning method owing to its excellent processability in dimethylformamide. Bead-free and uniform fibers were obtained as confirmed by SEM imaging and average fiber diameter was 1.69 +/- 0.34 mu m for AF-PIM-FM. In addition, electrospun PIM-1 fibrous membrane (PIM-FM) was prepared as a control group. Structural and thermal characterization of powder and membrane forms of the materials were performed using FT-IR, H-1 NMR, XPS, Elemental analyses, TGA, and DSC. The porosity of the samples was measured by N-2 sorption isotherms confirming amidoxime PIM-1 still maintain their porosity after functionalization. Amidoxime functionality along with membrane structure makes AF-PIM-FM a promising material for uranyl adsorption. First, a comparison between powder and membrane form of amidoxime functionalized PIM-1 was investigated using batch adsorption process. Although membrane form has shown slightly lower adsorption performance in the batch adsorption process, the advantage of using the membrane in column adsorption processes makes membrane form more feasible for real applications. In addition, amidoxime modification enhanced the uranium adsorption ability of PIM-FM up to 20 times. The effect of initial concentration and pH were investigated along with regeneration of the adsorbents. AF-PIM-FM was successfully used for five adsorption-desorption cycles without having any damage on the fibrous structure.
引用
收藏
页码:648 / 657
页数:10
相关论文
共 55 条
[1]   Materials for the Recovery of Uranium from Seawater [J].
Abney, Carter W. ;
Mayes, Richard T. ;
Saito, Tomonori ;
Dai, Sheng .
CHEMICAL REVIEWS, 2017, 117 (23) :13935-14013
[2]   Pervaporation of alcohols through highly permeable PIM-1 polymer films [J].
Adymkanov, S. V. ;
Yampol'skii, Yu. P. ;
Polyakov, A. M. ;
Budd, P. M. ;
Reynolds, K. J. ;
McKeown, N. B. ;
Msayib, K. J. .
POLYMER SCIENCE SERIES A, 2008, 50 (04) :444-450
[3]  
[Anonymous], 2017, WOODH PUBL SER BIOM
[4]   High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications [J].
Bonso, Jeliza S. ;
Kalaw, Grace D. ;
Ferraris, John P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (02) :418-424
[5]   Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)-co-chlorinated Poly(vinyl chloride) (PVC-co-CPVC) Fiber [J].
Brown, Suree ;
Yue, Yanfeng ;
Kuo, Li-Jung ;
Mehio, Nada ;
Li, Meijun ;
Gill, Gary ;
Tsouris, Costas ;
Mayes, Richard T. ;
Saito, Tomonori ;
Dai, Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (15) :4139-4148
[6]   Contaminant uranium phases and leaching at the Fernald site in Ohio [J].
Buck, EC ;
Brown, NR ;
Dietz, NL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (01) :81-88
[7]   Highly permeable polymers for gas separation membranes [J].
Budd, Peter M. ;
McKeown, Neil B. .
POLYMER CHEMISTRY, 2010, 1 (01) :63-68
[8]   Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1 [J].
Budd, Peter M. ;
McKeown, Neil B. ;
Ghanem, Bader S. ;
Msayib, Kadhum J. ;
Fritsch, Detlev ;
Starannikova, Ludmila ;
Belov, Nikolai ;
Sanfirova, Olga ;
Yampolskii, Yuri ;
Shantarovich, Victor .
JOURNAL OF MEMBRANE SCIENCE, 2008, 325 (02) :851-860
[9]   Free volume and intrinsic microporosity in polymers [J].
Budd, PM ;
McKeown, NB ;
Fritsch, D .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (20) :1977-1986
[10]   Gas separation membranes from polymers of intrinsic microporosity [J].
Budd, PM ;
Msayib, KJ ;
Tattershall, CE ;
Ghanem, BS ;
Reynolds, KJ ;
McKeown, NB ;
Fritsch, D .
JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) :263-269