Thermal-benchmarking for cloud hosting green data centers

被引:9
作者
Chaudhry, Muhammad Tayyab [1 ]
Jamal, M. Hasan [1 ]
Gillani, Zeeshan [1 ]
Anwar, Waqas [1 ]
Khan, Muhammad Salman [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Lahore Campus, Lahore, Pakistan
关键词
Cloud computing; Green data centers; Thermal benchmarking; Workload modeling; RESOURCE-MANAGEMENT; ENERGY-EFFICIENT; WORKLOAD; POWER; SIMULATION;
D O I
10.1016/j.suscom.2019.100357
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Thermal efficient usage of cloud hosting data center servers saves cooling energy and helps establish green cloud data centers. To achieve this goal, the data centers must be stress-tested to avail thermal data related to server utilization. The inherent limitations of cloud computing limit the control of cloud data center owner over the workload execution of cloud services except for the infrastructure and therefore thermal-aware workload modeling or thermal benchmarking of cloud infrastructure can fill this gap. Thermal-benchmarking techniques, through manipulation of server utilization, reveal the thermal profiles and thermal statistics of the servers that can be useful for thermal efficient data center management. This paper presents a generic approach to thermal-benchmarking and profiling of cloud hosting data center servers. We propose workload models to generate customizable thermal benchmarks for stress testing of data center servers. Additionally, we use workload traces from Alibaba cloud to generate thermal statistics to show that the proposed thermal benchmarking approach is applicable to any data center workload trace for any data center server. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 29 条
  • [1] Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers
    Al-Qawasmeh, Abdulla M.
    Pasricha, Sudeep
    Maciejewski, Anthony A.
    Siegel, Howard Jay
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (02) : 477 - 491
  • [2] Alibaba Inc, 2018, AL PROD CLUST DAT V2
  • [3] [Anonymous], 2016, 1005775 LBNL
  • [4] [Anonymous], SUSTAIN COMPUT INFOR
  • [5] [Anonymous], [No title captured]
  • [6] [Anonymous], [No title captured]
  • [7] [Anonymous], [No title captured]
  • [8] [Anonymous], [No title captured]
  • [9] Thermal-Aware Scheduling in Green Data
    Chaudhry, Muhammad Tayyab
    Ling, Teck Chaw
    Manzoor, Atif
    Hussain, Syed Asad
    Kim, Jongwon
    [J]. ACM COMPUTING SURVEYS, 2015, 47 (03)
  • [10] Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results
    Cupertino, Leandro
    Da Costa, Georges
    Oleksiak, Ariel
    Piatek, Wojciech
    Pierson, Jean-Marc
    Salom, Jaume
    Siso, Laura
    Stolf, Patricia
    Sun, Hongyang
    Zilio, Thomas
    [J]. AD HOC NETWORKS, 2015, 25 : 535 - 553