Upper bounds on the multiplicative complexity of symmetric Boolean functions

被引:2
作者
Brandao, Luis T. A. N. [1 ]
Calik, Cagdas [1 ]
Sonmez Turan, Meltem [1 ]
Peralta, Rene [1 ]
机构
[1] NIST, Cryptog Technol Grp, 100 Bur Dr, Gaithersburg, MD 20899 USA
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2019年 / 11卷 / 06期
关键词
Symmetric Boolean functions; Multiplicative complexity; Upper bounds; Logic minimization; 94A60; 06E30;
D O I
10.1007/s12095-019-00377-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A special metric of interest about Boolean functions is multiplicative complexity (MC): the minimum number of AND gates sufficient to implement a function with a Boolean circuit over the basis {XOR, AND, NOT}. In this paper we study the MC of symmetric Boolean functions, whose output is invariant upon reordering of the input variables. Based on the Hamming weight method from Muller and Preparata (J. ACM 22(2), 195-201, 1975), we introduce new techniques that yield circuits with fewer AND gates than upper bounded by Boyar et al. (Theor. Comput. Sci. 235(1), 43-57, 2000) and by Boyar and Peralta (Theor. Comput. Sci. 396(1-3), 223-246, 2008). We generate circuits for all such functions with up to 25 variables. As a special focus, we report concrete upper bounds for the MC of elementary symmetric functions Sigma kn and counting functions Ekn with up to n =25 input variables. In particular, this allows us to answer two questions posed in 2008: both the elementary symmetric Sigma 48 and the counting E48 functions have MC 6. Furthermore, we show upper bounds for the maximum MC in the class of n-variable symmetric Boolean functions, for each n up to 132.
引用
收藏
页码:1339 / 1362
页数:24
相关论文
共 18 条
  • [1] [Anonymous], 1999, SWITCHING THEORY LOG
  • [2] On the multiplicative complexity of Boolean functions over the basis (Λ,⊕,1)
    Boyar, J
    Peralta, R
    Pochuev, D
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 235 (01) : 43 - 57
  • [3] Short non-interactive cryptographic proofs
    Boyar, J
    Damgård, I
    Peralta, R
    [J]. JOURNAL OF CRYPTOLOGY, 2000, 13 (04) : 449 - 472
  • [4] Tight bounds for the multiplicative complexity of symmetric functions
    Boyar, Joan
    Peralta, Rene
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 223 - 246
  • [5] Brakerski Zvika, 2014, ACM Transactions on Computation Theory, V6, DOI 10.1145/2633600
  • [6] The multiplicative complexity of 6-variable Boolean functions
    Calik, Cagdas
    Turan, Meltem Sonmez
    Peralta, Rene
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (01): : 93 - 107
  • [7] Symmetric Boolean functions
    Canteaut, A
    Videau, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2791 - 2811
  • [8] Carlet C, 2012, LECT NOTES COMPUT SC, V7549, P366, DOI 10.1007/978-3-642-34047-5_21
  • [9] Circuit minimization team at the Cryptographic Technology Group NIST, 2019, CIRC FUNCT INT CRYPT
  • [10] Find Magnus Gausdal, 2014, Computer Science - Theory and Applications. 9th International Computer Science Symposium in Russia, CSR 2014. Proceedings: LNCS 8476, P167, DOI 10.1007/978-3-319-06686-8_13