Long-term analysis of stochastic θ-methods for damped stochastic oscillators

被引:23
作者
Citro, Vincenzo [1 ]
D'Ambrosio, Raffaele [2 ]
机构
[1] Univ Salerno, DIIN, Salerno, Italy
[2] Univ LAquila, Dept Engn & Comp Sci & Math, Laquila, Italy
关键词
Stochastic theta-methods; Stochastic oscillators; Long-term analysis; DIFFERENTIAL-EQUATIONS; NUMERICAL-SIMULATION; STABILITY;
D O I
10.1016/j.apnum.2019.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze long-term properties of stochastic theta-methods for damped linear stochastic oscillators. The presented a-priori analysis of the error in the correlation matrix allows to infer the long-time behaviour of stochastic theta-methods and their capability to reproduce the same long-term features of the continuous dynamics. The theoretical analysis is also supported by a selection of numerical experiments. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 28 条
[11]   On the numerical discretisation of stochastic oscillators [J].
Cohen, David .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (08) :1478-1495
[12]   ON THE STABILITY OF θ-METHODS FOR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J].
Conte, Dajana ;
D'Ambrosio, Raffaele ;
Paternoster, Beatrice .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (07) :2695-2708
[13]   Search for highly stable two-step Runge-Kutta methods [J].
D'Ambrosio, R. ;
Izzo, G. ;
Jackiewicz, Z. .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) :1361-1379
[14]   NUMERICAL PRESERVATION OF LONG-TERM DYNAMICS BY STOCHASTIC TWO-STEP METHODS [J].
D'Ambrosio, Raffaele ;
Moccaldi, Martina ;
Paternoster, Beatrice .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (07) :2763-2773
[15]  
DAmbrosio R., MEAN SQUARE CO UNPUB
[16]   Locally Linearized methods for the simulation of stochastic oscillators driven by random forces [J].
de la Cruz, H. ;
Jimenez, J. C. ;
Zubelli, J. P. .
BIT NUMERICAL MATHEMATICS, 2017, 57 (01) :123-151
[17]   CONSERVATIVE STOCHASTIC DIFFERENTIAL EQUATIONS: MATHEMATICAL AND NUMERICAL ANALYSIS [J].
Faou, Erwan ;
Lelievre, Tony .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :2047-2074
[18]  
Gardiner C. W., 1990, HDB STOCHASTIC METHO
[19]   Mean-square and asymptotic stability of the stochastic theta method [J].
Higham, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :753-769
[20]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546