Dual Sequential Variational Autoencoders for Fraud Detection

被引:5
作者
Alazizi, Ayman [1 ,2 ]
Habrard, Amaury [1 ]
Jacquenet, Francois [1 ]
He-Guelton, Liyun [2 ]
Oble, Frederic [2 ]
机构
[1] Univ Lyon, Lab Hubert Curien, Univ St Etienne, UMR CNRS 5516, F-42000 St Etienne, France
[2] Worldline, F-95870 Bezons, France
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020 | 2020年 / 12080卷
关键词
Anomaly detection; Fraud detection; Sequential data; Variational autoencoder;
D O I
10.1007/978-3-030-44584-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fraud detection is an important research area where machine learning has a significant role to play. An important task in that context, on which the quality of the results obtained depends, is feature engineering. Unfortunately, this is very time and human consuming. Thus, in this article, we present the DuSVAE model that consists of a generative model that takes into account the sequential nature of the data. It combines two variational autoencoders that can generate a condensed representation of the input sequential data that can then be processed by a classifier to label each new sequence as fraudulent or genuine. The experiments we carried out on a large real-word dataset, from the Worldline company, demonstrate the ability of our system to better detect frauds in credit card transactions without any feature engineering effort.
引用
收藏
页码:14 / 26
页数:13
相关论文
共 22 条
[1]   Fraud detection system: A survey [J].
Abdallah, Aisha ;
Maarof, Mohd Aizaini ;
Zainal, Anazida .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 68 :90-113
[2]   Anomaly Detection, Consider your Dataset First An illustration on Fraud Detection [J].
Alazizi, Ayman ;
Habrard, Amaury ;
Jacquenet, Francois ;
He-Guelton, Liyun ;
Oble, Frederic ;
Siblini, Wissam .
2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, :1351-1355
[3]  
[Anonymous], 2015, ACS SYM SER
[4]  
[Anonymous], Anomaly detection: A survey, DOI [10.1145/1541880.1541882., DOI 10.1145/1541880.1541882]
[5]   Feature engineering strategies for credit card fraud detection [J].
Bahnsen, Alejandro Correa ;
Aouada, Djamila ;
Stojanovic, Aleksandar ;
Ottersten, Bjoern .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 51 :134-142
[6]  
GOLAN I, 2018, ADV NEUR IN, V31
[7]   Learning Temporal Regularity in Video Sequences [J].
Hasan, Mahmudul ;
Choi, Jonghyun ;
Neumann, Jan ;
Roy-Chowdhury, Amit K. ;
Davis, Larry S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :733-742
[8]   CONNECTIONIST LEARNING PROCEDURES [J].
HINTON, GE .
ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) :185-234
[9]   Adaptive Mixtures of Local Experts [J].
Jacobs, Robert A. ;
Jordan, Michael I. ;
Nowlan, Steven J. ;
Hinton, Geoffrey E. .
NEURAL COMPUTATION, 1991, 3 (01) :79-87
[10]   Sequence classification for credit-card fraud detection [J].
Jurgovsky, Johannes ;
Granitzer, Michael ;
Ziegler, Konstantin ;
Calabretto, Sylvie ;
Portier, Pierre-Edouard ;
He-Guelton, Liyun ;
Caelen, Olivier .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 100 :234-245