A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems: applications in electronics

被引:40
作者
Addi, Khalid [1 ]
Brogliato, B. [2 ]
Goeleven, D. [1 ]
机构
[1] Univ La Reunion, IREMIA, F-97400 St Denis, France
[2] Bipop Team Project, INRIA, F-38334 Saint Ismier, France
关键词
Linear variational inequalities; Linear complementarity problems; Recession functions; Recession cones; Set-valued ampere-volt characteristics in electronics;
D O I
10.1007/s10107-009-0268-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The main object of this paper is to present a general mathematical theory applicable to the study of a large class of linear variational inequalities arising in electronics. Our approach uses recession tools so as to define a new class of problems that we call "semi-complementarity problems". Then we show that the study of semi-complementarity problems can be used to prove new qualitative results applicable to the study of linear variational inequalities of the second kind.
引用
收藏
页码:31 / 67
页数:37
相关论文
共 25 条
[1]  
ADDI K, 2006, 5590 INRIA
[2]   A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics [J].
Addi, Khalid ;
Adly, Samir ;
Brogliato, Bernard ;
Goeleven, Daniel .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (01) :30-43
[3]  
[Anonymous], 1978, Nonlinear mappings of monotone type
[4]   Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2004, 51 (05) :343-353
[5]  
Brogliato B., 2007, Theory and Applications, V2, P2
[6]  
Cottle R.W., 1992, The Linear Complementarity Problem
[7]  
Duvaut G., 1972, INEQUATIONS MECANIQU, P387
[8]  
Facchinei F., 2003, SPRING S OPERAT RES, VI
[9]  
Fichera G., 1972, ENCY PHYS, VVI
[10]   ON THE SOLVABILITY OF NONCOERCIVE LINEAR VARIATIONAL-INEQUALITIES IN SEPARABLE HILBERT-SPACES [J].
GOELEVEN, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 79 (03) :493-511