Statistical structures on tangent bundles and Lie groupps

被引:5
作者
Peyghan, Esmaeil [1 ]
Seifipour, Davood [1 ]
Gezer, Aydin [2 ]
机构
[1] Arak Univ, Fac Sci, Dept Math, Arak 3815666349, Iran
[2] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2021年 / 50卷 / 04期
关键词
metric;   statistical structure; tangent bundle; tangent Lie group; lift connection; G-NATURAL METRICS;
D O I
10.15672/hujms.645070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let TM be a tangent bundle over a Riemannian manifold M with a Riemannian metric g and TG be a tangent Lie group over a Lie group with a left-invariant metric g. The purpose of the paper is two folds. Firstly, we study statistical structures on the tangent bundle TM equipped with two Riemannian g-natural metrics and lift connections. Secondly, we define a left-invariant complete lift connection on the tangent Lie group TG equipped with metric ge introduced in [F. Asgari and H. R. Salimi Moghaddam, On the Riemannian geometry of tangent Lie groups, Rend. Circ. Mat. Palermo II. Series, 2018] and study statistical structures in this setting.
引用
收藏
页码:1140 / 1154
页数:15
相关论文
共 17 条
  • [1] On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds
    Abbassi, MTK
    Sarih, M
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) : 19 - 47
  • [2] Information geometry of the EM and em algorithms for neural networks
    Amari, SI
    [J]. NEURAL NETWORKS, 1995, 8 (09) : 1379 - 1408
  • [3] On the Riemannian geometry of tangent Lie groups
    Asgari F.
    Salimi Moghaddam H.R.
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2): : 185 - 195
  • [4] Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric
    Balan, Vladimir
    Peyghan, Esmaeil
    Sharahi, Esa
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 120 - 135
  • [5] Belkin M, 2006, J MACH LEARN RES, V7, P2399
  • [6] Bilen L, 2017, EURASIAN MATH J, V8, P18
  • [7] Interaction of Codazzi Couplings with (Para-)Kahler Geometry
    Fei, Teng
    Zhang, Jun
    [J]. RESULTS IN MATHEMATICS, 2017, 72 (04) : 2037 - 2056
  • [8] GUDMUNDSSON S, 2002, EXPOS MATH, V0020, P00001, DOI [10.1016/S0723-0869(02)80027-5, DOI 10.1016/S0723-0869(02)80027-5]
  • [9] Ianus S., 1994, Sci. Bull. Univ. Politech. Bucharest Ser. D, V56, P29
  • [10] Lauritzen S.L., 1987, DIFFERENTIAL GEOMETR, P96