Dark two-soliton solutions for nonlinear Schrodinger equations in inhomogeneous optical fibers

被引:16
作者
Liu, Xiaoyan [1 ]
Luan, Zitong [2 ]
Zhou, Qin [3 ]
Liu, Wenjun [1 ]
Biswas, Anjan [4 ,5 ,6 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Econ & Management, Beijing 100876, Peoples R China
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Solitons; Bilinear method; Partial differential equation; Nonlinear Schrodinger equation; ROSSBY SOLITARY WAVES; CUBIC NONLINEARITY; CONSERVATION-LAWS; SOLITONS; PERTURBATION; PROPAGATION; WELL; KERR;
D O I
10.1016/j.cjph.2019.08.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the variable coefficient nonlinear Schrodinger equation is investigated analytically. With the bilinear method, the bilinear forms and analytic soliton solutions are obtained. Based on the obtained analytic solutions, the effect of free parameters on the control of soliton transmission is studied. Influences of second-order and third-order dispersion coefficients on dark solitons are discussed. Results in this paper would be of great significance in the generation of dark solitons.
引用
收藏
页码:310 / 315
页数:6
相关论文
共 36 条
[11]   DARK-SOLITON JITTER IN AMPLIFIED OPTICAL-TRANSMISSION SYSTEMS [J].
HAMAIDE, JP ;
EMPLIT, P ;
HAELTERMAN, M .
OPTICS LETTERS, 1991, 16 (20) :1578-1580
[12]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[14]   DARK-PULSE PROPAGATION IN OPTICAL FIBERS [J].
KROKEL, D ;
HALAS, NJ ;
GIULIANI, G ;
GRISCHKOWSKY, D .
PHYSICAL REVIEW LETTERS, 1988, 60 (01) :29-32
[15]   Gray optical dips in the subpicosecond regime [J].
Li, L ;
Li, ZH ;
Xu, ZY ;
Zhou, GS ;
Spatschek, KH .
PHYSICAL REVIEW E, 2002, 66 (04) :8
[16]   Rational Solitons in the Parity-Time-Symmetric Nonlocal Nonlinear Schrodinger Model [J].
Li, Min ;
Xu, Tao ;
Meng, Dexin .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (12)
[17]   Dark and antidark soliton interactions in the nonlocal nonlinear Schrodinger equation with the self-induced parity-time-symmetric potential [J].
Li, Min ;
Xu, Tao .
PHYSICAL REVIEW E, 2015, 91 (03)
[18]   Interaction properties of solitonics in inhomogeneous optical fibers [J].
Liu, Wenjun ;
Zhang, Yujia ;
Triki, Houria ;
Mirzazadeh, Mohammad ;
Ekici, Mehmet ;
Zhou, Qin ;
Biswas, Anjan ;
Belic, Milivoj .
NONLINEAR DYNAMICS, 2019, 95 (01) :557-563
[19]   Generation and control of multiple solitons under the influence of parameters [J].
Liu, Xiaoyan ;
Triki, Houria ;
Zhou, Qin ;
Mirzazadeh, Mohammad ;
Liu, Wenjun ;
Biswas, Anjan ;
Belic, Milivoj .
NONLINEAR DYNAMICS, 2019, 95 (01) :143-150
[20]   Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows [J].
Liu, Yu ;
Dong, Huanhe ;
Zhang, Yong .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) :465-481